吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2573-2580.doi: 10.13229/j.cnki.jdxbgxb.20221082

• 交通运输工程·土木工程 • 上一篇    下一篇

基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟

雷鸣(),尹思阳,王德玲,张继承(),路世伟   

  1. 长江大学 城市建设学院,湖北 荆州 434023
  • 收稿日期:2022-08-26 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 张继承 E-mail:88456455@qq.com;100995@yangtzeu.edu.cn
  • 作者简介:雷鸣(1974-),男,副教授,博士.研究方向:工程管理.E-mail:88456455@qq.com

Seismic performance simulation of high⁃rise concrete core tube based on static nappe analysis algorithm

Ming LEI(),Si-yang YIN,De-ling WANG,Ji-cheng ZHANG(),Shi-wei LU   

  1. School of Urban Construction,Yangtze University,Jingzhou 434023,China
  • Received:2022-08-26 Online:2023-09-01 Published:2023-10-09
  • Contact: Ji-cheng ZHANG E-mail:88456455@qq.com;100995@yangtzeu.edu.cn

摘要:

为减少因震动导致的高层建筑混凝土核心筒损伤,提出了基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟方法。选择某应用屈曲约束支撑的高层建筑混凝土核心筒为研究对象,结合PKPM软件模拟了基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能。实验结果表明:静力推覆侧力分布形式对高层建筑混凝土核心筒的顶点位移角和基底剪力计算结果影响较大;屈曲约束支撑的高层建筑混凝土核心筒在X向的基底剪力曲线呈指数型增长;强震动作用下高层建筑混凝土核心筒的刚度降低、柱剪力的占比不断增大;延性系数恒定时,高层建筑混凝土核心筒能量谱比值与刚度折减系数呈正相关关系;高层建筑混凝土核心筒的损伤情况随强震持时的提升而提升;随着刚度特征值的不断增大,剪力墙耗能在总滞回耗能比中的占比下降,而框架梁柱耗能的占比则有所上升且分布形式大致呈线性。

关键词: 静力推覆分析, 高层建筑, 混凝土核心筒, 抗震性能模拟, 顶点位移角, 基底剪力

Abstract:

In order to reduce the damage of concrete core tube of high-rise buildings caused by vibration, the seismic performance simulation method of concrete core tube of high-rise buildings based on static pushover analysis algorithm was studied. A high-rise building concrete core tube with buckling constraint bracing was selected as the research object, and the seismic performance of high-rise building concrete core tube based on static nappe analysis algorithm was simulated with software PKPM. The test results show that the distribution of the lateral force of the static nappe has great influence on the calculation results of the apex displacement angle and the base shear force of the concrete core tube in high-rise buildings. In the X-direction, the base shear curve of concrete core tube supported by buckling constraint increases exponentially. The stiffness of concrete core tube decreases and the proportion of column shear increases under strong vibration. When ductility coefficient is constant, the ratio of energy spectrum of high-rise concrete core tube is positively correlated with stiffness reduction coefficient. The damage of concrete core tube in high-rise building caused by longer strong earthquake duration increases with the increase of strong earthquake duration. With the increasing of the characteristic stiffness value, the proportion of the energy consumption of shear wall in the total hysteretic energy consumption ratio decreases, while the proportion of the energy consumption of frame beam and column increases and the distribution pattern is roughly linear.

Key words: static nappe analysis, high-rise buildings, concrete core tube, seismic performance simulation, vertex displacement angle, base shear

中图分类号: 

  • TU971

图1

高层建筑的整体结构"

表1

构件截面尺寸"

构件尺寸/mm
外框柱2000×2000~1000×1000,含钢率为7.5%
钢梁H1000×500×30×40~H1000×200×25×58
核心筒外墙1500~500
内墙500~300
连梁1000

环带

桁架

弦杆H1000×500×50×50
腹杆1000×500×50×50
楼面梁H500×500×15×30
楼板筒外150,筒内160,加强层及相邻层160

图2

高层建筑-核心筒结构模型"

表2

不同静力推覆侧力分布的顶点位移角和基底剪力"

参 数侧力分布形式
均布倒三角第一振型三者平均
正常使用时基底剪力/kN1381.61074.61206.81230.5
正常使用时顶点位移角/rad1/15001/13001/12001/1300
暂时使用时基底剪力/kN3118.52623.62461.82734.6
暂时使用时顶点位移角/rad1/5001/4001/3901/430
生命安全时基底剪力/kN6717.85231.84712.55554.9
生命安全时顶点位移角/rad1/1401/1301/1701/150
接近倒塌时基底剪力/kN5474.84953.74331.55326.7
接近倒塌时顶点位移角/rad1/601/781/801/75

图3

静力推覆曲线"

图4

混凝土核心筒在X向的静力推覆分析结果"

表3

X向柱、墙分担的剪力"

层数柱剪力/kN墙剪力/kN柱剪力百分比/%
13 246.53041 432.3187.34
43 652.28538 946.5378.51
73 784.69536 118.4259.45
105 192.66030 456.56314.37
135 473.86024 603.49517.93
164 662.32518 521.79019.91
194 834.8159 927.01532.47
222 247.7503 006.39955.86

图5

弱震动柱剪力与强震动总基底剪力的比值"

图6

不同刚度折减系数对能量谱比值的影响"

图7

刚度折减系数与能量谱比值关系"

图8

强震持时与滞回能耗比的关系"

图9

刚度特征值与各构件滞回耗能比关系"

图10

高层建筑最大层间加速率响应结果"

图11

三种方法的结构顶点位移测试结果"

1 郭天祥. 基于大震动力弹塑性分析的某超高层混合结构抗震设计[J]. 建筑结构, 2020, 50(16): 64-70.
Guo Tian-xiang. Seismic design of a super high-rise hybrid structure based on dynamic elastoplastic analysis under rare earthquake[J]. Building Structure, 2020, 50(16): 64-70.
2 李永梅, 王浩, 彭凌云, 等. 填充墙钢筋混凝土框架结构基于位移的改进抗震设计方法[J]. 建筑结构学报, 2019, 40(6): 125-132.
Li Yong-mei, Wang Hao, Peng Ling-yun, et al. Advanced displacement-based seismic design method of reinforced concrete frame structures with infill wall[J]. Journal of Building Structures, 2019, 40(6): 125-132.
3 倪茜, 张斌, 李锦锦. 基于静力弹塑法方法的碳纤维加固框架结构抗震性能分析[J]. 工业建筑, 2020, 50(2): 104-108, 112.
Ni Qian, Zhang Bin, Li Jin-jin.Seismic performance analysis of carbon fiber reinforced frame structures based on static elastic-plastic method[J].Industrial Construction, 2020, 50(2): 104-108, 112.
4 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价[J]. 建筑结构学报, 2021, 42(5): 55-63.
Lu Xiao. Seismic resilience evaluation of reinforced concrete frame core tube structure[J]. Journal of Building Structures, 2021, 42(5): 55-63.
5 寇俊敏, 苍雁飞. 建筑框架-核心筒结构静力弹塑性参数优化[J]. 计算机仿真, 2020, 37(9): 189-193.
Kou Jun-min, Cang Yan-fei. Optimization of static elastoplastic parameters of frame core tube structure[J]. Computer Simulation, 2020, 37(9): 189-193.
6 贺星新, 朱金坤, 刘斌, 等. 吴江某超高层塔楼结构抗震设计与分析[J]. 建筑结构, 2021, 51(): 676-682.
He Xing-xin, Zhu Jin-kun, Liu Bin, et al. Seismic design and analysis of a super tall tower in Wujiang[J]. Building Structure, 2021, 51(Sup.1): 676-682.
7 肖从真, 李建辉, 陆宜倩, 等. C100高强混凝土框架-核心筒高层建筑结构抗震性能研究[J]. 建筑科学, 2021, 37(3): 1-7.
Xiao Cong-zhen, Li Jian-hui, Lu Yi-qian, et al. Research on seismic performance of frame-core tube high-rise building structure with C100 high-strength concrete[J]. Building Science, 2021, 37(3): 1-7.
8 曲扬, 罗永峰, 黄青隆, 等. 格构拱结构动力响应评估的改进模态推覆分析法[J]. 同济大学学报: 自然科学版, 2019, 47(1): 1-8.
Qu Yang, Luo Yong-feng, Huang Qing-long, et al. An improved modal pushover analysis procedure for estimating seismic responses of latticed arch[J]. Journal of Tongji University(Natural Science), 2019, 47(1): 1-8.
9 郝润霞, 王谋庭, 贾硕, 等. 基于拟力法的框架结构静力推覆分析[J]. 西南交通大学学报, 2020, 55(5): 1028-1035.
Hao Run-xia, Wang Mou-ting, Jia Shuo, et al. Static pushover analysis of frame structure based on force analogy method[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1028-1035.
10 陈安英, 朱光超, 完海鹰, 等. 斜交网格钢框架-混凝土核心筒结构施工变形控制数值模拟[J]. 工业建筑, 2021, 51(2): 76-82.
Chen An-ying, Zhu Guang-chao, Wan Hai-ying, et al.Numerical simulation of deformation control for a hybrid structure combined with diagrid structure and concrete core tube[J]. Industrial Construction, 2021, 51(2): 76-82.
11 吴轶, 林柱帆, 杨春, 等. 带高强混凝土钢板剪力墙的超高层框架-核心筒结构抗震性能研究[J]. 建筑结构, 2019, 49(8): 9-15.
Wu Yi, Lin Zhu-fan, Yang Chun, et al. Study on seismic performances of super high-rise frame-corewall structure with high strength concrete composite steel plate shear walls[J]. Building Structure, 2019, 49(8): 9-15.
12 李英民, 姜宝龙, 张梦玲, 等. 重庆高科太阳座大厦模型结构振动台试验研究[J]. 建筑结构学报, 2019, 40(3): 142-151.
Li Ying-min, Jiang Bao-long, Zhang Meng-ling, et al. Shaking table test on model structure of Chongqing Gaoke sun constellation mansion[J]. Journal of Building Structures, 2019, 40(3): 142-151.
13 唐建余, 潘文, 董卫青, 等. 某超高层框架-钢筋混凝土核心筒结构减震案例分析[J]. 工业安全与环保, 2021, 47(7): 55-59.
Tang Jian-yu, Pan Wen, Dong Wei-qing, et al. Case study on seismic response of one super high rise frame reinforced concrete core tube structure[J]. Industrial Safety and Environmental Protection, 2021, 47(7): 55-59.
14 曾繁良, 黄炎生, 周靖. 钢管混凝土柱排架-核心筒结构抗震性能研究[J]. 振动与冲击, 2020, 39(12): 190-197.
Zeng Fan-liang, Huang Yan-sheng, Zhou Jing. A study on the seismic performance of concrete-filled steel tube column-steel shelf-concrete core tube structures[J]. Journal of Vibration and Shock, 2020, 39(12): 190-197.
15 吴轶, 杨春, 王俊然, 等. 新型带耗能支撑-分散核心筒结构的抗震性能研究[J]. 工程抗震与加固改造, 2020, 42(5): 133-140, 147.
Wu Yi, Yang Chun, Wang Jun-ran, et al. Study on seismic performances of a new decentralized core tubes structure with energy dissipating braces[J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(5):133-140, 147.
[1] 董锦坤, 刘斌, 张延年, 叶冶. 高层建筑三维结构横风向弯曲耦合振动的稳定性[J]. 吉林大学学报(工学版), 2005, 35(05): 562-0566.
[2] 金载南, 鞠彦忠, 秦力, 杨湘江, 陈建华. 对高层剪力墙结构动力修改的试验研究[J]. 吉林大学学报(工学版), 2000, (3): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .