吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3207-3213.doi: 10.13229/j.cnki.jdxbgxb.20211455

• 计算机科学与技术 • 上一篇    下一篇

基于曲波变换与拟合优度检验的遥感图像去噪方法

成丽波(),李新月,李喆,贾小宁   

  1. 长春理工大学 数学与统计学院,长春 130022
  • 收稿日期:2021-12-30 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:成丽波(1971-),女,教授,博士. 研究方向:遥感图像处理. E-mail: clbyy@126.com
  • 基金资助:
    国家自然科学基金项目(12171054);吉林省教育厅科学技术研究项目(JJKH20230788KJ)

Remote sensing image denoising method based on curvelet transform and goodness-of-fit test

Li-bo CHENG(),Xin-yue LI,Zhe LI,Xiao-ning JIA   

  1. College of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2021-12-30 Online:2023-11-01 Published:2023-12-06

摘要:

针对可见光遥感图像噪声去除问题,设计了一种基于曲波变换与拟合优度检验的遥感图像去噪方法。首先,对遥感图像进行曲波分解,得到曲波分解系数,并对曲波系数进行归一化;然后,利用拟合优度检验对归一化的曲波系数进行局部检验。经过局部检验后,得到真实信号系数,并对其进行逆归一化,得到逆归一化的曲波系数;最后,对曲波系数进行曲波逆变换,得到去噪后的遥感图像。将本文去噪算法与小波阈值去噪算法、曲波阈值去噪算法、小波变换与拟合优度检验去噪算法、曲波循环平移去噪算法进行实验对比。实验结果表明:在峰值信噪比和结构相似性的指标上,本文算法均优于以上几种算法。

关键词: 计算数学, 可见光遥感图像, 曲波变换, 拟合优度检验, 图像去噪

Abstract:

To solve the denoising problem from visible light remote sensing image, a denoising method for remote sensing image based on Curvelet transformation and Goodness of Fit test is proposed. The method first decomposes the remote sensing image by Curvelet theory to get the decomposition coefficients. Then the method normalizes Curvelet coefficients, and tests the normalized Curvelet coefficients locally by using the goodness of fit test. The real signal coefficients are obtained after the goodness of fit test, and the coefficients are inversely normalized to obtain the inversely normalized Curvelet coefficients. Finally, Curvelet coefficients are inversely transformed to obtain the denoised remote sensing image. The denoising algorithm is compared with Wavelet threshold denoising algorithm, Curvelet threshold denoising algorithm, Discrete wavelet transform and Goodness of Fit test denoising algorithm and Curvelet cyclic translation denoising algorithm. Experimental results show that this algorithm is better than the above algorithms in the indexes of peak signal-to-noise ratio and structural similarity.

Key words: computational mathematics, visible light remote sensing image, Curvelet transform, Goodness of Fit test, image denoising

中图分类号: 

  • TP751

图1

遥感图像(ImageD)加噪(σ=10)后去噪效果对比图"

图2

遥感图像(ImageA)加噪(σ=15)后去噪效果对比图"

图3

遥感图像(ImageF)加噪(σ=10)后去噪高对比度示意图"

图4

遥感图像(ImageB)加噪(σ=20)后去噪高对比度示意图"

图5

遥感图像(ImageC)加噪(σ=20)后去噪效果对比图"

图6

遥感图像(ImageE)加噪(σ=25)后去噪效果对比图"

表1

遥感图像加噪后使用不同算法去噪的评价指标结果"

图像算法σ=10σ=15σ=20σ=25
PSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIM
ImageA小波阈值去噪28.510.75126.020.64524.200.55422.780.478
曲波阈值去噪29.080.80626.720.75525.240.71724.350.688
GOF-DWT去噪28.990.81627.020.77325.660.73924.560.685
曲波循环平移去噪29.800.82727.700.78126.370.74825.480.722
GOF-Curvelet去噪31.120.83528.730.78527.150.73325.950.685
ImageB小波阈值去噪28.270.75025.940.65124.210.56422.840.491
曲波阈值去噪29.030.80426.860.75525.420.71624.520.687
GOF-DWT去噪28.530.78926.750.74625.470.71024.450.678
曲波循环平移去噪29.790.82127.800.77426.520.74125.660.713
GOF-Curvelet去噪30.670.83528.640.78327.190.73425.890.682
ImageC小波阈值去噪26.270.74024.690.66223.510.59322.480.530
曲波阈值去噪27.310.77425.430.69324.320.63123.610.583
GOF-DWT去噪26.860.74425.420.67224.300.60723.610.562
曲波循环平移去噪27.980.80326.040.71824.900.65224.100.601
GOF-Curvelet去噪28.490.80626.900.75025.640.69524.700.648
ImageD小波阈值去噪26.720.77324.540.67922.990.59721.750.524
曲波阈值去噪27.630.80424.950.73523.310.67822.240.631
GOF-DWT去噪28.200.82026.150.77124.830.73123.660.690
曲波循环平移去噪28.460.82126.050.76424.550.71923.560.683
GOF-Curvelet去噪29.400.83327.240.78425.740.73824.540.690
1 Gao J. Editorial for the special issue "ecosystem services with remote sensing"[J]. Remote Sensing, 2020, 12(14): 12142191.
2 Cao D G, Xing H F, Wong M S, et al. A stacking ensemble deep learning model for building extraction from remote sensing images[J]. Remote Sensing, 2021, 13(19): 13193898.
3 唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261.
Tang Yao, Wang Li-juan, Ma Guo-chao, et al. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252-261.
4 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197.
Zhou Pei-cheng, Cheng Gong, Yao Xi-wen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182-197.
5 Marston J M, D'Alpoim Guedes J, Warinner C. Method and Theory in Paleoethnobotany[M]. Denver: University Press of Colorado, 2014.
6 Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
7 Cai T T, Silverman B W. Incorporating information on neighbouring coefficients into wavelet estimation[J]. The Indian Journal of Statistics, Series B, 2001, 63(2): 127-148.
8 Chen G Y, Bui T D, Krzyżak A. Image denoising with neighbour dependency and customized wavelet and threshold[J]. Pattern Recognition, 2005, 38(1): 115-124.
9 Zhou D W, Cheng W G. Image denoising with an optimal threshold and neighbouring window[J]. Pattern Recognition Letters, 2008, 29(11): 1694-1697.
10 杨恢先, 王绪四, 谢鹏鹤, 等. 改进阈值与尺度间相关的小波红外图像去噪[J]. 自动化学报, 2011, 37(10): 1167-1174.
Yang Hui-Xian, Wang Xu-si, Xie Peng-he, et al. Infrared image denoising based on improved threshold and inter-scale correlations of wavelet transform[J]. Acta Automatica Sinica, 2011, 37(10): 1167-1174.
11 Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transform[J]. SIAM Journal on Multiscale Modeling and Simulation, 2006, 5(3): 861-899.
12 Rahman S M M, Ahmad M O, Swamy M N S. Bayesian wavelet-based image denoising using the Gauss-Hermite expansion[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1755-1771.
13 Sinthuja S, Saravanan S. GIS based satellite image de-noising using curvelet transform[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2017, 8(3): 654- 656.
14 Wu C, Ma X, Wang W. Hyperspectral image denoise based on curvelet transform combined with weight coefficient method[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(4): 4425-4429.
15 Raju C, Reddy T S, Sivasubramanyam M. Denoising of remotely sensed images via curvelet transform and its relative assessment[J]. Procedia Computer Science, 2016, 89: 771-777.
16 李雄飞, 宋璐, 张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报: 工学版, 2019, 49(4): 1307-1319.
Li Xiong-fei, Song Lu, Zhang Xiao-Li. Remote sensing image fusion based on cooperative empirical wavelet transform[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1307-1319.
17 刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.
LIU Di, Jia Jin-lu, Zhao Yu-Qing, et al. Overview of image denoising methods based on depth learning[J]. Computer Engineering and Applications, 2021, 57(7): 1-13.
18 Isola P, Zhu J Y, Zhou T, et al. Image to image translation with conditional adversarial networks[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 1125-1134.
19 Zeng J, Pang J, Sun W, et al. Deep graph Laplacian regularization for robust denoising of real images[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1759-1768.
20 王智文, 李绍滋. 基于多元统计模型的分形小波自适应图像去噪[J]. 计算机学报, 2014, 37(6): 1380-1389.
Wang Zhi-wen, Li Shao-zi. Adaptive fractal-wavelet image denoising base on multivariate statistical model[J]. Chinese Journal of Computers, 2014, 37(6): 1380-1389.
21 Cui Y Q, Wang K. Image denoising based on local statistical models in wavelet domain[J]. Opto-Electronic Engineering, 2007, 34(3): 93-97.
22 Bacchelli S, Papi S. Statistically based multiwavelet de-noising[J]. Journal of Computational and Applied Mathematics, 2007, 210(1/2): 47-55.
23 赵海英, 张小利, 李雄飞, 等. 基于多尺度Meanshift图像去噪算法[J]. 吉林大学学报: 工学版, 2014, 44(5): 1417-1422.
Zhao Hai-ying, Zhang Xiao-li, Li Xiong-fei, et al. Image denoising algorithm based on multi-scale meanshift[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(5): 1417-1422.
24 Tian J, Chen L, Ma L H. A wavelet-domain non-parametric statistical approach for image denoising[J]. IEICE Electronics Express, 2010, 7(18): 1409-1415.
25 Boubchir L, Boashash B. Wavelet denoising based on the MAP estimation using the BKF Prior with application to images and EEG signals[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1880-1894.
26 Naveed K, Shaukat B, Ehsan S, et al. Multiscale image denoising using Goodness-of-Fit test based on EDF statistics[J]. PLoS ONE, 2019, 14(5): 0216197.
27 Naveed K, Rehman N U. Wavelet based multivariate signal denoising using Mahalanobis distance and EDF statistics[J]. IEEE Transactions on Signal Processing, 2020, 68: 5997-6010.
28 Anderson T W, Darling D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 268(49): 765-769.
29 Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[1] 蔡志丹,方明,李喆,许佳路. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2649-2658.
[2] 邬开俊, 王春丽, 单亚州, 杜三山, 鲁怀伟. 噪声作用下的化学突触耦合神经元系统的同步[J]. 吉林大学学报(工学版), 2017, 47(5): 1554-1560.
[3] 姜超, 耿则勋, 刘立勇, 潘映峰. 结合噪声去除的极大似然图像复原[J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[4] 祁冰, 孔韦韦. 基于改进型交叉视觉皮层模型的自适应图像去噪[J]. 吉林大学学报(工学版), 2014, 44(01): 184-190.
[5] 尹奎英1,刘宏伟2,金林1. 快速的Otsu双阈值SAR图像分割法[J]. 吉林大学学报(工学版), 2011, 41(6): 1760-1765.
[6] 陈玫玫, 郭树旭, 王瑶, 吴斌, 于思瑶, 邵向鑫. 压缩感知的指静脉图像去噪[J]. 吉林大学学报(工学版), 2011, 41(02): 559-0562.
[7] 王宏志,武伟,钟诚 . 基于非线性扩散与小波变换的混合图像去噪算法[J]. 吉林大学学报(工学版), 2009, 39(02): 525-0529.
[8] 张锐,唐志平,郑航 . 离散元与有限元耦合的时空多尺度计算方法[J]. 吉林大学学报(工学版), 2009, 39(02): 408-0412.
[9] 崔艳秋;王珂;孙巍. 基于小波域自适应高斯混合模型的图像去噪方法[J]. 吉林大学学报(工学版), 2006, 36(06): 983-0988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .