吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 821-827.doi: 10.13229/j.cnki.jdxbgxb.20220593

• 通信与控制工程 • 上一篇    

基于等面积圆环和伴星夹角的星图识别算法

张刘(),何金航,刘赫,章家保(),吕雪莹   

  1. 吉林大学 仪器科学与电气工程学院,长春 130012
  • 收稿日期:2022-05-18 出版日期:2024-03-01 发布日期:2024-04-18
  • 通讯作者: 章家保 E-mail:zhangliu@jlu.edu.cn;changjacob@163.com
  • 作者简介:张刘(1978-),男,教授,博士.研究方向:航天光学遥感系统设计,仿真及应用技术,星敏感器技术.E-mail:zhangliu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62073150)

Star identification algorithm based on equal⁃area circle and companion star pinch angle

Liu ZHANG(),Jin-hang HE,He LIU,Jia-bao ZHANG(),Xue-ying LYU   

  1. College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China
  • Received:2022-05-18 Online:2024-03-01 Published:2024-04-18
  • Contact: Jia-bao ZHANG E-mail:zhangliu@jlu.edu.cn;changjacob@163.com

摘要:

针对于传统径向和环向特征星图识别算法在构建径向特征过程中伴星分布不均匀以及采用环向特征匹配过程中特征值不稳定的问题,提出了一种等面积圆环划分和伴星矢量夹角相结合的星图识别算法。通过选取动态半径使得径向特征下的圆环面积相等,保证伴星落在每个圆环的概率相等,有效提高了径向匹配过程的识别率。对于径向匹配后冗余的导航星,采用伴星组成的矢量夹角特征进行筛选,选定匹配特征值最高的为最终识别结果。仿真模拟结果表明:当添加位置噪声为1像素时,星图识别成功率达到95%;当伪星数目为2颗时,识别率达到98%。相较于传统径向和环向识别算法,本文方法在识别率和识别速度上具有明显优势。

关键词: 星图识别, 径向特征, 环向特征, 匹配度

Abstract:

In order to solve the problems of uneven distribution of companion stars during the construction of radial features and unstable feature values in the matching process with circular features in the traditional radial and circular feature recognition algorithms, a star identification algorithm combining equal-area circular division and companion star vector pinch angle was proposed. By choosing the dynamic radius, so that the area of circles under radial feature is equal, the probability of companion star falling on each circle was guaranteed to be equal, which effectively improves the recognition rate of radial matching process. For the redundant navigation stars after radial matching, the vector pinch features composed of companion stars were used for screening, while the one with the highest matching feature value was selected as the final identification result. The results of experimental simulation show that the success rate of star identification reaches 95% when the added position noise is 1 pixel; the recognition rate reaches 98% when the number of false stars is 2; compared with the traditional radial and circular recognition algorithms, the proposed method has obvious advantages in the recognition rate and recognition speed.

Key words: star identification, radial feature, cyclic feature, matching degree

中图分类号: 

  • V448.11

图1

不同环带下的导航星数目"

图2

环向特征的不稳定性"

图3

基于等面积圆环径向特征"

图4

基于伴星夹角的环向特征"

图5

位置噪声对矢量夹角的影响"

表1

径向特征与环向特征的参数"

特征模式半径圆环数目
径向Rr=10°Nq=200
环向Rc=7°

图6

等面积圆环划分后不同环带下的导航星数目"

图7

查找表结构"

图8

比特向量转化示意图"

图9

环带数目对径向识别率的影响"

图10

识别成功率与位置噪声之间的关系"

图11

星图识别率"

表2

存储容量和平均运行时间"

算法存储容量/kB识别时间/ms
传统径向和环向37031.8
三角形38401500
本文44421.6
1 Wang G, LI J, Wei X. Star identification based on hash map[J]. IEEE Sensors Journal, 2018, 18(4): 1591-1599.
2 Kim K, Bang H. Algorithm with patterned singular value approach for highly reliable autonomous star identification[J]. Sensors, 2020, 20(2): No. 374.
3 Wang H, Wang Z Y, Wang B D, et al. An artificial intelligence enhanced star identification algorithm[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(11): 1661-1670.
4 Li J, Wei X, Wang G, et al. Improved grid algorithm based on star pair pattern and two-dimensional angular distances for full-sky star identification[J]. IEEE Access, 2020, 8: 1010-1020.
5 Liang X, Ma W, Zhou J, et al. Star identification algorithm based on image normalization and zernike moments[J]. IEEE Access, 2020, 8: 29228-29237.
6 Rijlaarsdam D, Yous H, Byrne J, et al. A survey of lost-in-space star identification algorithms since 2009[J]. Sensors, 2020, 20(9): No. 2579.
7 Xu L, Jiang J, Liu L. RPNet: a representation learning-based star identification algorithm[J]. IEEE Access, 2019, 7: 92193-92202.
8 Liebe C C. Star trackers for attitude determination[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(6): 10-16.
9 Liu M Y, Wei X, Wen D S, et al. Star identification based on multilayer voting algorithm for star sensors[J]. Sensors, 2021, 21(9): No. 3084.
10 Schulz V H, Marcelino G M, Seman L O, et al. Universal verification platform and star simulator for fast star tracker design[J]. Sensors, 2021, 21(3): No. 907.
11 Padgett C, Kreutz-delgado K. A grid algorithm for autonomous star identification[J]. IEEE Transactions on Aerospace & Electronic Systems, 1997, 33(1): 202-213.
12 Zhang G J, Wei X G, Jiang J. Full-sky autonomous star identification based on radial and cyclic features of star pattern[J]. Image and Vision Computing, 2008, 26(7): 891-897.
13 高扬, 赵金宇, 陈涛, 等. 添加补偿码的快速径向伴星特征星图识别[J]. 光学精密工程, 2017, 25: 1627-1634.
Gao Yang, Zhao Jin-yu, Chen Tao, et al. Radial neighbor feature with compensate code star pattern recognition algorithm[J]. Optics and Precision Engineering, 2017, 25: 1627-1634.
14 赵军阳, 张志利, 刘殿剑. 一种利用改进径向特征的星图识别方法[J]. 系统仿真学报, 2019, 31(4): 601-607.
Zhao Jun-yang, Zhang Zhi-li, Liu Dian-jian, et al. Novel star map identification algorithm using improved radial features[J]. Journal of System Simulation, 2019, 31(4): 601-607.
15 Wei X, Wen D, Song Z, et al. A star identification algorithm based on radial and dynamic cyclic features of star pattern[J]. Advances in Space Research, 2019, 63(7): 2245-2259.
16 Nabi A, Ahmed-Foitih Z, Cheriet M E A. Improved triangular-based star pattern recognition algorithm for low-cost star trackers[J]. Journal of King Saud University-Computer and Information Sciences, 2021, 33(3): 258-267.
17 Silani E, Lovera M. Star identification algorithms: Novel approach & comparison study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1275-1288.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!