吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3693-3698.doi: 10.13229/j.cnki.jdxbgxb.20230511

• 通信与控制工程 • 上一篇    下一篇

基于载波相位差分的电力铁塔塔身主材形变检测算法

刘义艳(),代杰()   

  1. 长安大学 能源与电气工程学院,西安 710064
  • 收稿日期:2023-05-23 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 代杰 E-mail:lyy77111@126.com;daijiechd@chd.edu.cn
  • 作者简介:刘义艳(1981-),女,副教授,博士.研究方向:信号处理,图像识别,北斗定位与电力杆塔形变监测.E-mail:lyy77111@126.com
  • 基金资助:
    陕西省重点研发计划项目(2021GY-098);国家重点研发计划项目(2021YFB2601300)

Deformation detection algorithm for main materials of power tower based on carrier phase difference

Yi-yan LIU(),Jie DAI()   

  1. School of Energy and Electrical Engineering,Chang'an University,Xi'an 710064,China
  • Received:2023-05-23 Online:2024-12-01 Published:2025-01-24
  • Contact: Jie DAI E-mail:lyy77111@126.com;daijiechd@chd.edu.cn

摘要:

针对目前检测算法无法准确检测电力铁塔塔身的主材形变问题,提出了基于载波相位差分的电力铁塔塔身主材形变检测算法。该算法首先结合局部均值分解方法和支持向量回归机检测并修复卫星信号的周跳;其次,建立载波相位差分检测模型,在形变检测过程中,通过卡尔曼滤波对检测模型进行更新;最后,采用LAMBDA算法对载波相位差分检测模型中的整周模糊度展开计算,并将计算结果代入模型中,利用更新后的载波相位差分检测模型实现电力铁塔塔身主材形变的检测。实验结果表明:本文算法的周跳检测精度高、修复效果好、形变检测精度高。

关键词: 载波相位差分, 局部均值分解, 支持向量回归机, LAMBDA算法, 形变检测

Abstract:

At present, the detection algorithm cannot accurately detect the deformation of the main material of the power tower body. Therefore, a carrier phase difference based deformation detection algorithm for the main material of the power tower body was proposed. Firstly, combining local mean decomposition method and support vector regression machine to detect and repair cycle jumps in satellite signals.Secondly, a carrier phase differential detection model was established, and during the deformation detection process, the detection model was updated through Kalman filtering. Finally, the LAMBDA algorithm was used to calculate the integer ambiguity in the carrier phase differential detection model, and the calculation results are substituted into the model. The updated carrier phase differential detection model is used to detect the deformation of the main material of the power tower body. The experimental results show that the proposed algorithm has high cycle slip detection accuracy, good repair effect, and high deformation detection accuracy.

Key words: carrier phase difference, local mean decomposition, support vector regression machine, LAMBDA algorithm, deformation detection

中图分类号: 

  • TN967.1

图1

两种情况下的卫星信号"

图2

周跳检测结果"

图3

周跳修复结果"

图4

电力铁塔"

表1

不同算法的形变检测误差"

算法

方向

误差/mm

本文

x

0.03

y

0.01

z

0.02

文献[3

x

0.56

y

0.57

z

0.61

文献[4

x

0.48

y

0.53

z

0.69

1 孙启刚,宋卓彦,鉴庆之,等.基于无线传感网的输电铁塔结构健康状态监测技术及应用[J].工业建筑,2022,52(10):224-228.
Sun Qi-gang, Song Zhuo-yan, Jian Qing-zhi, et al. Wireless sensor network-based health status monitoring technology for transmission tower structures and its application [J]. Industrial Construction, 2022, 52(10): 224-228.
2 王彦海,刘晓亮,任文强,等.滑坡区输电塔线体系抗变形能力及动力响应分析[J].科学技术与工程,2021,21(25):10725-10731.
Wang Yan-hai, Liu Xiao-liang, Ren Wen-qiang, et al. Anti-deformation ability and dynamic response analysis of transmission tower-line system in landslide area[J]. Science Technology and Engineering, 2021,21(25): 10725-10731.
3 袁梦超,沈小军,杜勇.超特高压输电铁塔倾斜度数字化智能测量算法[J].高电压技术,2022,48(8):3001-3011.
Yuan Meng-chao, Shen Xiao-jun, Du Yong. Digital intelligent measurement algorithm of inclination for EHV and UHV transmission line tower [J]. High Voltage Engineering, 2022,48 (8): 3001-3011.
4 陈广华,葛梦莹,黄白瑶,等.基于双目视觉的电力塔倾斜检测方法[J].北京交通大学学报,2022,46(2):128-137.
Chen Guang-hua, Ge Meng-ying, Huang Bai-yao, et al. Binocular vision-based tilt detection method for power towers[J]. Journal of Beijing Jiaotong University, 2022,46(2): 128-137.
5 郭泽辉,庞春雷,张闯,等. INS辅助的动态北斗双频周跳探测与修复方法[J].航天控制,2021,39(3):43-48, 55.
Guo Ze-hui, Pang Chun-lei, Zhang Chuang, et al. Dynamic BDS double-frequency cycle-slip detection and repair method aided by INS[J]. Aerospace Control, 2021,39(3): 43-48, 55.
6 章繁,柴洪洲,肖国锐,等. 一种Galileo五频周跳探测与修复新方法[J].中国惯性技术学报,2021,29(2):154-163.
Zhang Fan, Chai Hong-zhou, Xiao Guo-rui, et al. A new method of Galileo five frequency cycle slip detection and repair[J]. Journal of Chinese Inertial Technology, 2021,29(2): 154-163.
7 门宝辉,常溶溶.基于局部均值分解和最大熵谱估计的径流分析[J].水力发电学报,2021,40(9):27-34.
Bao-hui Men, Chang Rong-rong. Runoff analysis based on local mean decomposition and maximum entropy spectrum estimation[J]. Journal of Hydroelectric Engineering, 2021,40(9): 27-34.
8 郭广颂,高海荣,张勇.基于迁移学习灰支持向量回归机的交互式进化计算[J].控制与决策,2021,36(10): 2399-2408.
Guo Guang-song, Gao Hai-rong, Zhang Yong. Interactive evolutionary computation based on transfer learning grey support vector regression[J]. Control and Decision, 2021,36(10): 2399-2408.
9 汪金胜,李永乐,杨剑,等.基于贝叶斯支持向量回归机的自适应可靠度分析方法[J].计算力学学报,2022,39(4):488-497.
Wang Jin-sheng, Li Yong-le, Yang Jian, et al. Adaptive algorithm based on Bayesian support vector regression for structural reliability analysis[J]. Chinese Journal of Computational Mechanics, 2022, 39(4): 488-497.
10 范绍帅,荣志强,田辉,等.基于载波相位的高精度室内快速定位算法[J].通信学报,2022,43(1):172-181.
Fan Shao-shuai, Rong Zhi-qiang, Tian Hui, et al. High-precision indoor fast positioning algorithm based on carrier phase[J]. Journal on Communications, 2022,43(1): 172-181.
11 何维,岳紫颖,周牧,等.基于载波相位差值的室内Wi-Fi定位方法[J].北京邮电大学学报,2021,44(4):19-25.
He Wei, Yue Zi-ying, Zhou Mu, et al. Indoor Wi-Fi localization method based on carrier phase difference[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(4): 19-25.
12 包龙生,陶天阳,于玲,等.基于北斗系统的桥梁高精度监测算法研究[J].广西大学学报: 自然科学版,2022,47(2):311-319.
Bao Long-sheng, Tao Tian-yang, Yu Ling, et al. Research on high precision monitoring algorithm for bridges based on Beidou system[J]. Journal of Guangxi University(Natural Science Edition), 2022,47(2): 311-319.
13 邓洪高, 程归, 纪元法,等. 基于AWDE算法的整周模糊度解算算法[J]. 计算机仿真, 2022, 39(8):327-332.
Deng Hong-gao, Cheng Gui, Ji Yuan-fa, et al. Integer ambiguity resolution based on adaptive weighting differential evolution algorithm[J]. computer simulation, 2022,39(8): 327-332.
[1] 钱方明, 刘薇, 黄艳. InSAR双轨差分法原理及应用[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 92-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .