吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 693-699.doi: 10.13229/j.cnki.jdxbgxb.20231458

• 计算机科学与技术 • 上一篇    

YOLOv5网络算法下交通监控视频违章车辆多目标检测

郑利民1(),陈双2,李刚1   

  1. 1.辽宁工业大学 汽车与交通工程学院,辽宁 锦州 121001
    2.沈阳理工大学 汽车与交通学院,沈阳 110159
  • 收稿日期:2023-12-29 出版日期:2025-02-01 发布日期:2025-04-16
  • 作者简介:郑利民(1978-),男,副教授.研究方向:汽车检测与测试技术.E-mail:zclssy33693@163.com
  • 基金资助:
    国家自然科学青年基金项目(51605213)

Multiple object detection of violated vehicles in traffic surveillance video based on YOLOv5 network algorithm

Li-min ZHENG1(),Shuang CHEN2,Gang LI1   

  1. 1.Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou 121001,China
    2.College of Automobile and Traffic,Shenyang Ligong University,Shenyang 110159,China
  • Received:2023-12-29 Online:2025-02-01 Published:2025-04-16

摘要:

为提升交通监控视频违章车辆检测效果,提出一种YOLOv5网络算法下交通监控视频违章车辆多目标检测方法。交通监控视频图像融合处理中对灰度图直方图均衡化操作,通过窗口函数计算曝光不同图像的灰度偏差值,利用图像腐蚀将融合图像全部鬼影去除,通过图像像素归一化处理和拉普拉斯金字塔获得高质量图像融合结果;以YOLOv5网络算法作为依托,在Transformer模块利用驱动图编码器构建多头自注意力学习机制,对图像违章车辆目标特征语义信息展开增强处理;在连续扩张卷积基础上利用密集连接结构,将特征图卷积展开单一像素加操作,加强特征语义信息;利用Softmax函数进行特征多尺度融合,实现交通监控视频违章车辆多目标检测。实验结果表明:本文方法可有效提升交通监控视频图像质量,使用的YOLOV5网络算法计算强度较高,违章车辆多目标检测效果较为准确。

关键词: YOLOV5网络算法, 交通监控视频, 违章车辆, 多目标检测

Abstract:

In order to improve the effectiveness of detecting illegal vehicles in traffic monitoring videos, a multi-objective detection method for illegal vehicles in traffic monitoring videos based on the YOLOv5 network algorithm is proposed. In the fusion processing of traffic monitoring video images, the grayscale histogram equalization operation is performed, and the grayscale deviation values of different exposed images are calculated through the window function. All ghosts in the fused images are removed by image corrosion, and high-quality image fusion results are obtained through pixel normalization and Laplace pyramid; Based on the YOLOv5 network algorithm, a multi head self attention learning mechanism is constructed using a driver graph encoder in the Transformer module to enhance the semantic information of target features of illegal vehicles in the image; On the basis of continuous dilated convolution, dense connection structures are utilized to expand the feature map convolution into a single pixel addition operation, enhancing the semantic information of features; Utilizing the Softmax function for feature multi-scale fusion to achieve multi-target detection of illegal vehicles in traffic surveillance videos. The experimental results show that the proposed method can effectively improve the quality of traffic monitoring video images, and the YOLOv5 network algorithm used has high computational intensity, resulting in more accurate multi-target detection of illegal vehicles.

Key words: YOLOv5 network algorithm, traffic monitoring videos, violating vehicles, multi object detection

中图分类号: 

  • TP391.4

图1

YOLOv5网络结构图"

图2

YOLOv5网络算法下交通监控视频违章车辆多目标检测流程图"

图3

交通监控真实场景"

图4

测试展示图像"

表1

交通监控视频图像融合鬼影去除性能分析"

测试图像编号测试指标鬼影去除前鬼影去除后
01~100平均梯度22.13845.118
空间频率42.78960.345
标准差50.15273.551
101~200平均梯度8.67123.742
空间频率16.25135.873
标准差61.22081.122
201~300平均梯度12.77128.160
空间频率17.52037.251
标准差56.11476.441
301~400平均梯度15.66332.773
空间频率15.05129.152
标准差45.66864.022

图5

算法强度测试结果"

图6

3种方法的交通监控视频违章车辆多目标检测结果"

1 成怡, 张宇, 李宝全. 基于改进CenterNet的交通监控车辆检测算法[J]. 计算机仿真, 2023, 40(1): 131-136.
Cheng Yi, Zhang Yu, Li Bao-quan. Vehicle detection algorithm based on improved CenterNet in traffic surveillance[J]. Computer Simulation, 2023, 40(1): 131-136.
2 孙敏, 李免, 赵玉舟, 等. 基于实时交通状况和自适应像素分割的运动车辆检测[J]. 液晶与显示, 2021, 36(10): 1454-1462.
Sun Min, Li Mian, Zhao Yu-zhou, et al. Vehicle detection based on real-time traffic condition and adaptive pixel segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1454-1462.
3 郭宇阳, 胡伟超, 戴帅, 等. 面向路侧交通监控场景的轻量车辆检测模型[J]. 计算机工程与应用, 2022, 58(6): 192-199.
Guo Yu-yang, Hu Wei-chao, Dai Shuai, et al. A lightweight vehicle detection model for roadside traffic monitoring scenarios[J]. Computer Engineering and Applications, 2022, 58(6): 192-199.
4 陈立潮, 解丹, 曹建芳, 等. 改进光流法和GMM融合的车辆实时检测算法研究[J]. 智能系统学报, 2021, 16(2): 271-278.
Chen Li-chao, Dan Jie, Cao Jian-fang, et al. Research on vehicle real-time detection algorithm based on improved optical flow method and GMM[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 271-278.
5 赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究[J]. 图学学报, 2022, 43(5): 776-782.
Zhao Lu-lu, Wang Xue-ying, Zhang Yi, et al. Vehicle target detection based on YOLOv5s fusion SENet[J]. Journal of Graphics, 2022, 43(5): 776-782.
6 Jin Z, Zhang Q, Gou C, et al. Transformer-based vehicle detection for surveillance images[J]. Journal of Electronic Imaging, 2022, 31(5): 5160217.
7 Fern􀅡ndez J D, Garcia-Gon􀅡zlez J, R Benítez-Rochel et al. Automated detection of vehicles with anomalous trajectories in traffic surveillance videos[J]. Integrated Computer-Aided Engineering, 2023, 30(3): 293-309.
8 刘新富, 蒋慕蓉, 黄亚群, 等. 结合稳像补帧与VIBE算法的抖动视频前景目标提取方法[J]. 计算机科学, 2022, 49(): 404-411.
Liu Xin-fu, Jiang Mu-rong, Huang Ya-qun, et al. Using image stabilization and VIBE algorithm to extract foreground target from jitter video[J]. Computer Science, 2022, 49 (Sup.2): 404-411.
9 雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237-244.
Lei Da-jiang, Du Jia-hao, Zhang Li-ping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44 (1): 237-244.
10 王峰, 程咏梅. 基于JBF与MLNE的图像融合方法[J]. 西北工业大学学报, 2022, 40(6): 1414-1421.
Wang Feng, Cheng Yong-mei. Image fusion method based on JBF and multi-order local region energy[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1414-1421.
[1] 金立生,郭柏苍,王芳荣,石健. 基于改进YOLOv3的车辆前方动态多目标检测算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!