吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3135-3147.doi: 10.13229/j.cnki.jdxbgxb.20230056
• 车辆工程·机械工程 • 上一篇
任宪丰1(
),袁文文1,吴学强1,时艳茹1,姚蒙蒙1,张凯旋2,杨瑞鑫2(
),潘悦2
Xian-feng REN1(
),Wen-wen YUAN1,Xue-qiang WU1,Yan-ru SHI1,Meng-meng YAO1,Kai-xuan ZHANG2,Rui-xin YANG2(
),Yue PAN2
摘要:
本文通过引入两种对锂离子电池老化模式影响最大的内部副反应,改进传统伪二维模型的负极过电位方程,拓展建立锂离子电池性能衰退的电化学机理模型。应用响应面分析法,提取能够全面描述电池性能衰退的老化特征参数簇。建立一种长短时记忆神经网络,以基于机理模型获取的老化特征参数和历史容量保持率作为输入,预测电池未来容量衰退轨迹。结果表明:电池容量预测误差小于2%。
中图分类号:
| 1 | Xiong R, Huang J T, Duan Y Z, et al. Enhanced lithium-ion battery model considering critical surface charge behavior[J]. Applied Energy, 2022, 314: No.118915. |
| 2 | Xiong R, Pan Y, Shen W X, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: No.110048. |
| 3 | Xiong R, Ma S X, Li H L, et al. Toward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuit[J]. Iscience, 2020, 23(4): No.101010. |
| 4 | Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-a post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
| 5 | Waldmann T, Iturrondobeitia A, Kasper M, et al. Post-mortem analysis of aged lithium-ion batteries: disassembly methodology and physico-chemical analysis techniques[J]. Journal of The Electrochemical Society, 2016, 163(10): No.21211609. |
| 6 | Waldmann T, Ghanbari N, Kasper M, et al. Correlations between electrochemical data and results from post-mortem analysis of aged lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(8): No.20411508. |
| 7 | Klett M, Eriksson R, Groot J, et al. Non-uniform aging of cycled commercial LiFePO4∥graphite cylindrical cells revealed by post-mortem analysis[J]. Journal of Power Sources, 2014, 257: 126-137. |
| 8 | Golla S U, Zeibig D, Prickler L, et al. Characterization of degeneration phenomena in lithium-ion batteries by combined microscopic techniques[J]. Micron, 2018, 113: 10-19. |
| 9 | Buqa H, Wursig A, Vetter J, et al. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries[J]. Journal of Power Sources, 2006, 153(2): 385-390. |
| 10 | Darma M S D, Lang M, Kleiner K, et al. The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: a post mortem analysis[J]. Journal of Power Sources, 2016, 327: 714-725. |
| 11 | Stiasazny B, Ziegler J C, Kraub E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li (Ni0.5Mn0.3Co0.2) O2/graphite lithium-ion batteries part I: cycle aging[J]. Journal of Power Sources, 2014, 251: 439-450. |
| 12 | Badey Q, Cherouvrier G, Reynier Y, et al. Mechanisms and modeling of lithium-ion battery aging for a vehicle usage[J]. ECS Meeting Abstracts IOP Publishing, 2011, 2(15): 742. |
| 13 | Jaumann T, Balach J, Klose M, et al. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24956-24967. |
| 14 | Liu S, Jiang J, Shi W, et al. State of charge and peak power estimation of NCM/Li4Ti5O12 battery using ic curve for rail tractor application[C]∥ 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014: 1-3. |
| 15 | Pan B, Dong D, Wang J G, et al. Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J]. Electrochimica Acta, 2020, 362: No.137101. |
| 16 | He J T, Bian X L, Liu L C, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 29: No. 101400. |
| 17 | Li X Y, Yuan C G, Li X H, et al. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: No.116467. |
| 18 | Pan W J, Luo X S, Zhu M T, et al. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves[J]. Journal of Energy Storage, 2021, 42: No.103072. |
| 19 | Pastor F C, Widanage W D, Marco J, et al. Identification and quantification of ageing mechanisms in lithium-ion batteries using the EIS technique[C]∥ 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Derborn, USA, 2016: 1-6. |
| 20 | Han X B, Ouyang M G, Lu L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. |
| 21 | Zhang Q, White R E. Capacity fade analysis of a lithium ion cell[J]. Journal of Power Sources, 2008, 179(2): 793-798. |
| 22 | Schmidt A P, Bitzer M, Imre Á W, et al. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries[J]. Journal of Power Sources, 2010, 195(22): 7634-7638. |
| 23 | Ramadesigan V, Chen K, Burns N A, et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models[J]. Journal of the Electrochemical Society, 2011, 158(9):No. 13609926. |
| 24 | Fu R, Choe S Y, Agubra V, et al. Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode[J]. Journal of Power Sources, 2014, 261: 120-135. |
| 25 | Wu J, Chen J X, Feng X, et al. State of health estimation of lithium-ion batteries using autoencoders and ensemble learning[J]. Journal of Energy Storage, 2022, 55: No.105708. |
| 26 | Yang B W, Wang D F, Zhang B, et al. Aging diagnosis-oriented three-scale impedance model of lithium-ion battery inspired by and reflecting morphological evolution[J]. Journal of Energy Storage, 2023, 59: No.106357. |
| 27 | Lee Y K. Effect of transition metal ions on solid electrolyte interphase layer on the graphite electrode in lithium ion battery[J]. Journal of Power Sources, 2021, 484: No.229270. |
| 28 | Chouchaine M, Arcelus O, Franco A. Heterogeneous solid-electrolyte interphase in graphite electrodes assessed by 4D-resolved computational simulations[J]. Batteries & Supercaps, 2021, 4(9): 1457-1463. |
| 29 | Ren D S, Smith K, Guo D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165(10): No.20661810. |
| 30 | Hein S, Danner T, Latz A. An electrochemical model of lithium plating and stripping in lithium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8519-8531. |
| 31 | Doyle M, Newman J, Fuller T. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
| 32 | 刘兴涛, 刘晓剑, 武骥, 等. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报: 工学版, 2022, 52(6): 1273-1280. |
| Liu Xing-tao, Liu Xiao-jian, Wu Ji, et al. State of health estimation method for lithium⁃ion battery based on curve compression and extreme gradient boosting [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1273-1280. | |
| 33 | 高金武, 贾志桓, 王向阳,等. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报: 工学版, 2022, 52(9): 2192-2202. |
| Gao Jin-wu, Jia Zhi-huan, Wang Xiang-yang, et al. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2192-2202. | |
| 34 | Sak H, Senior A W, Beaufavs F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[J]. Interspeech, 2014, 2: 338-342. |
| [1] | 李房云,夏容,张怡欣. 考虑电池荷电状态的混合动力汽车复合电源协同控制[J]. 吉林大学学报(工学版), 2024, 54(4): 1114-1119. |
| [2] | 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441. |
| [3] | 龚敏明, 时玮, 张言茹, 姜君, 张维戈, 姜久春. 纯电动公交车锂离子动力电池的使用条件控制[J]. 吉林大学学报(工学版), 2014, 44(4): 1081-1087. |
| [4] | 张彩萍, 姜久春. 用基于遗传优化的扩展卡尔曼滤波算法辨识电池模型参数 [J]. , 2012, (03): 732-737. |
| [5] | 李杨, 王永武, 张火成, 张娜, 邹玉峰. 磷酸铁锂动力电池动态SOC状态下的分选[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 331-333. |
| [6] | 刘险峰,邹积岩,李立伟 . 大容量蓄电池组的连接方式[J]. 吉林大学学报(工学版), 2007, 37(03): 672-0674. |
|
||