Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 973-981.doi: 10.13229/j.cnki.jdxbgxb.20210779

Previous Articles     Next Articles

Analysis and experiment of active motion control of hydrostatic spindle embedded with control recess

Shu-jiang CHEN(),Chun-wang XU,Chang-hou LU,Kang WANG   

  1. School of Mechanical Engineering,Shandong University,Jinan 250061,China
  • Received:2021-08-13 Online:2023-04-01 Published:2023-04-20

Abstract:

In order to improve the rotation accuracy of the machine tool spindle without increasing the mechanical structure complexity, by controlling the active single-sided film throttle valve, the oil film force of the hydrostatic bearing embedded with control recess is actively adjusted to control the radial motion of the spindle. The oil film force of the bearing was obtained according to the Reynolds equation and the flow continuity equation, then, the theoretical model of the spindle motion was established. Theoretical and experimental researches on active control of the spindle radial rotation error were carried out based on PID controller, and the spindle motions under different types of loads were compared and analyzed. The results show that the spindle center can be kept at the target position under fixed load with the control of active hydrostatic system. The amplitude of the spindle motion under dynamic load can be reduced effectively and the orbit center is closer to target position than that without control.

Key words: mechanical and electronic engineering, rotation accuracy, active control, hydrostatic journal bearing, spindle center motion

CLC Number: 

  • TH133.3

Fig.1

Structure of bearing"

Fig.2

Hydraulic circuit diagram"

Fig.3

Unfolded figure of one pad of bearing"

Fig.4

Structure of servo valve"

Table 1

Voltage-displacement data"

输出位移电压/V
08162432404856647280
升/μm01.64.16.18.210.512.715.417.720.422.8
降/μm0.22.65.47.810.512.815.117.019.220.922.8

Fig.5

Oil film force analysis diagram"

Fig.6

Spindle motion diagram"

Fig.7

Simulation diagram of active control hydrostatic spindle system"

Table 2

Parameters of spindle system"

参数数值单位参数数值单位
l110.0252mdj0.001m
l210.0036mr12×10-3m
l120.048mr26×10-3m
l220.006mPs2×106Pa
R0.03mPsc3×106Pa
m20kgη0.00174Pa·s
lj0.1mh030×10-6m

Fig.8

Spindle motion under fixed load"

Fig.9

Spindle motion under periodic load"

Fig.10

Test rig"

Fig.11

Experiment under fixed load"

Fig.12

Experiment with rotation speed at 60 r/min"

1 Wu Q H, Sun Y Z, Chen W Q, et al. Effect of motor rotor eccentricity on aerostatic spindle vibration in machining processes[J]. Journal of Mechanical Engineering Science, 2018, 232(7): 1331-1342.
2 Zhang S J, To S. Spindle vibration influencing form error in ultra-precision diamond machining[J]. Journal of Mechanical Engineering Science, 2017, 231(17): 3144-3151.
3 Chen G D, Sun Y Z, Zhang F H, et al. Influence of ultra-precision flycutting spindle error on surface frequency domain error formation[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 3233-3241.
4 李永祥,毕晓勤. 机床主轴回转误差对零件加工精度的影响[J]. 河南工业大学学报: 自然科学版, 2005, 26(3): 57-59, 62.
Li Yong-xiang, Bi Xiao-qin. The Influence of lathe spindle rotary errors on spares machining precision[J]. Journal of Henan University of Technology(Natural Science Edition), 2005, 26(3): 57-59, 62.
5 Turek P, Jędrzejewski J, Modrzycki W. Methods of machine tool error compensation[J]. Journal of Machine Engineering, 2010, 10(4): 5-25.
6 路琳, 刘晓玲. 主轴轴承的选配与主轴部件旋转精度关系初探[J]. 组合机床与自动化加工技术, 2001, 42(6): 54-55.
Lu Lin, Liu Xiao-ling. The Relationship between the selection of spindle bearing and the rotation accuracy of spindle[J]. Modular Machine Tool & Automatic Manufacturing Technique,2001, 42(6): 54-55.
7 熊万里, 孙文彪, 刘侃, 等. 高速电主轴主动磁悬浮技术研究进展[J]. 机械工程学报, 2021, 57(13): 1-17.
Xiong Wan-li, Sun Wen-biao, Liu Kan, et al. Active magnetic bearing technology development in high-speed motorized spindles[J]. Journal of Mechanical Engineering, 2021, 57(13): 1-17.
8 Santos I F. Controllable sliding bearings and controllable lubrication principles—an overview[J]. Lubricants, 2018, 6(1): 1-12.
9 Santos I F. On the future of controllable fluid film bearings[J]. Mechanics and Industry, 2011, 12(4): 275-281.
10 Salazar J G, Santos I F. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings[J]. Journal of Engineering Tribology, 2015, 229(10): 1264-1275.
11 谢磊, 计江, 师浩浩. 一种轧辊静压轴承主动控制方法 [J]. 冶金设备, 2021, 42(3): 1-6.
Xie Lei, Ji Jiang, Shi Hao-hao. An active control method of roll hydrostatic bearing[J]. Metallurgical Equipment, 2021, 42(3): 1-6.
12 Rehman W U R, Luo Y X, Wang Y Q, et al. Fuzzy logic-based intelligent control for hydrostatic journal bearing[J]. Measurement and Control, 2019, 52(3/4): 229-243.
13 Rehman W U, Jiang G Y, Luo Y X, et al. Control of active lubrication for hydrostatic journal bearing by monitoring bearing clearance[J]. Advances in Mechanical Engineering, 2018, 10(4): 1-17.
14 Rehman W U, Jiang G Y, Iqbal N, et al. Intelligent servo feedback control for hydrostatic journal bearing [C]∥Proceedings of 1st International Conference on Intelligent Manufacturing and Internet of Things /The 5th International Conference on Computing for Sustainable Energy and Environment, Chongqing, China, 2018: 352-364.
15 Yang X G, Wang Y Q, Jiang G Y, et al. Dynamic characteristics of hydrostatic active journal bearing of four oil recesses[J]. Tribology Transactions, 2015, 58(1): 7-17.
16 丁振乾. 流体静压支承设计[M]. 上海: 上海科学技术出版社, 1989.
17 宋佳星. 压电陶瓷驱动伺服阀的设计及特性研究[D]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2019.
Song Jia-xing. Research on design and characteristics of servovalve actuated by piezoelectric ceramics[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2019.
[1] Ji-hai JIANG,Cun-ran ZHAO,Guan-long ZHANG,Ming-yang CHE. Tribological properties of coating materials of tribopairs for aviation kerosene piston pump [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 147-153.
[2] ZHANG Niao-na, ZHOU Sui, ZHANG De-jiang. Synchronization control of finite time convergence between two different structure chaos systems [J]. 吉林大学学报(工学版), 2011, 41(4): 1131-1134.
[3] DENG Zong-quan, WANG Xin-jie, YUE Hong-hao, . Active control of photostrictive laminated thin paraboloidal shell [J]. 吉林大学学报(工学版), 2011, 41(05): 1433-1438.
[4] Li Peng, Cheng Guang-ming, Dong Jing-shi, Yang Zhi-gang, Zeng Ping .

Piezoelectric pump with active electromagnetic driven valve

[J]. 吉林大学学报(工学版), 2008, 38(增刊): 111-0114.
[5] Wang Shipeng, Chen Suhuan. Upper and lower bounds of eigenvalues of uncertain closedloop systems with secondorder perturbation [J]. 吉林大学学报(工学版), 2006, 36(增刊1): 56-0061.
[6] Tan Ping. Traveling wave control for structure [J]. 吉林大学学报(工学版), 2006, 36(03): 417-0421.
[7] Liu Zhiru,Wang Qingnian, Wang Guangping. Active control during shifting in hybrid electric vehicle [J]. 吉林大学学报(工学版), 2006, 36(02): 153-0156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!