Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 2029-2042.doi: 10.13229/j.cnki.jdxbgxb.20211000

Previous Articles    

Classification and recognition model of entering and leaving stops' driving style considering energy consumption

Ya-li ZHANG(),Rui FU,Wei YUAN(),Ying-shi GUO   

  1. School of Automobile,Chang'an University,Xi'an 710064,China
  • Received:2021-10-03 Online:2023-07-01 Published:2023-07-20
  • Contact: Wei YUAN E-mail:zhangyali@chd.edu.cn;yuanwei@chd.edu.cn

Abstract:

To realize the classification and recognition of entering and leaving stops′ driving styles, based on the entering and leaving stops data in the natural driving process of pure electric bus, 14 driving behavior characterization indexes were selected, the dimension of the indexes is reduced by principal component analysis, and a K-means clustering model was established to cluster the entering and leaving stops segments into three categories. Taking economy, dynamic and comfort as the three dimensions of semantic interpretation, the three types were interpreted as high energy consumption & aggressive style, general style and energy-saving & comfort style. A three-layer BP neural network model was established to realize the on-line recognition of driving style. The model verification showed that the evaluation index values of the recognition model are near 0, and the average recognition rate of the model is 93.52%, which can better realize the driving style recognition of any entering and leaving stops segment.

Key words: traffic engineering, driving behavior, clustering, online identification model, ecological driving style, energy economy

CLC Number: 

  • U121

Fig.1

Data acquisition system"

Table 1

Statistics for driving segment"

指标名称符号计算公式
速度均值vˉvˉ=1ni=1nvi,vi0
速度标准差SvSv=i=1n(vi-vˉ)2n-1
加速踏板开度均值θˉ1θˉ1=1ni=1nθ1i
加速踏板开度标准差Sθ1Sθ1=i=1n(θ1i-θˉ1)2n-1
加速踏板开度大于2/3的比例P1P1=MN×100%
制动踏板开度均值θˉ2θˉ2=1ni=1nθ2i
制动踏板开度标准差Sθ2Sθ2=i=1n(θ2i-θˉ2)2n-1
加速度均值aˉaˉ=1ni=1nai,ai>0
加速度标准差SaSa=i=1n(ai-aˉ)2n-1
减速度均值dˉdˉ=1ni=1ndi,di<0
减速度标准差SdSd=i=1n(di-dˉ)2n-1
冲击度绝对值均值JˉJˉ=1ni=1nJi
冲击度绝对值标准差SJSJ=i=1n(Ji-Jˉ)2n-1
单位里程能耗均值EˉEPKEˉEPK=1ni=1nEEPKi

Table 2

KMO and Bartlett test"

方法数值
取样足够度的Kaiser?Meyer?Olkin 度量0.759
Bartlett 的球形度检验近似卡方4505.552
df78
Sig.0.000

Fig.2

Principal component characteristic value"

Fig.3

Variance contribution rate of each principalcomponent"

Table 3

Component matrix"

xl成 分
PC1PC2PC3PC4
主成分命名动力性指标经济性指标制动踏板开度舒适性指标
vˉ0.2030.680.294-0.517
Sv0.681-0.459-0.048-0.23
aˉ0.882-0.1740.1820.065
Sa0.832-0.167-0.025-0.003
dˉ-0.7510.0130.3370.248
Sd0.6780.074-0.498-0.206
Jˉ0.1530.779-0.1860.495
SJ0.6560.288-0.390.462
EˉEPK0.338-0.6390.1390.356
θˉ10.7940.2440.471-0.069
Sθ10.651-0.030.1970.277
P10.8020.1850.470.052
θˉ20.4930.027-0.439-0.27

Fig.4

K-means clustering evaluation index value"

Table 4

Cluster center"

成分簇1簇2簇3
PC1-0.3710.578-0.852
PC2-0.7930.0791.422
PC30.260-0.4850.823
PC40.460-0.278-0.173

Fig.5

Clustering results for driving segment"

Fig.6

Distribution of driving behavior indicators"

Table 5

Semantic representation matrix of ecological driving style"

语义指标驾驶行为 特征参数第1簇第2簇第3簇
经济性单位里程能耗最大居中最小
动力性速度标准差居中最大最小
加速度均值居中最大最小
加速度标准差居中最大最小
减速度绝对值均值居中最大最小
减速度标准差居中最大最小
加速踏板开度均值最小最大居中
加速踏板开度标准差居中最大最小
加速踏板开度超过2/3的比例最小最大居中
舒适性冲击度绝对值均值居中最大最小
冲击度绝对值标准差居中最大最小
考虑能耗的驾驶风格语义该类驾驶行为表现出最差的驾驶经济性,对动力性和舒适性的追求不显著,定义其为一般型驾驶风格该类驾驶行为表现出较差的驾驶经济性,追求动力性,行为表现最激进,舒适性也最差,定义其为耗能激进型驾驶风格该类驾驶行为表现出最好的驾驶经济性,追求平稳的驾驶,看重舒适性,定义其为节能舒适型驾驶风格

Fig.7

Corresponding relationship between averageprediction error and number of neuron nodes"

Fig.8

Model prediction errors corresponding to different training functions"

Fig.9

Variation trend of sum of squares of model errors with network learning rate"

Fig.10

Ecological driving style recognition modelstructure"

Fig.11

Expected and predicted values"

Fig.12

Prediction error"

Fig.13

Change trend of root mean square error"

Table 6

Model recognition results"

实际风格识别风格识别率/%平均识别率/%
123
1252092.5993.52
2133097.06
3011090.91

Table 7

Correlation statistics of entering and leavingstops segments of two driving styles"

相关统计值片段序号
12
速度均值/(km·h-128.9225.54
速度标准差14.1912.71
加速踏板开度均值/%74.1747.7
加速踏板开度标准差24.9123.33
加速踏板行程超过2/3的比例/%62.1625.81
制动踏板开度均值/%23.7411.9
制动踏板开度标准差3.489.57
加速度均值/(m·s-20.820.64
加速度标准差0.550.49
减速度均值/(m·s-20.90.73
减速度标准差0.480.45
单位里程能耗/(kW·h·km-12.060.45
总能耗/(kW·h)0.580.13
行驶距离/m280.4282.4
行程时间/s4843.5
行驶时间/s3034.5
加速占比/%48.3327.54
减速占比/%3039.13
匀速占比/%21.6733.33

Fig.14

Speed trend of the two driving styles withdistance"

1 Wang Wen-shuo, Xi Jun-qiang, Liu Chang, et al. Human-centered feed-forward control of a vehicle steering system based on a driver's path-following characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6):1440-1453.
2 Martinez C M, Heucke M, Wang Fei-yue, et al. Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 666-676.
3 Dib W, Chasse A, Moulin P, et al. Optimal energy management for an electric vehicle in eco-driving application[J]. Control Engineering Practice, 2014, 29(8): 299-307.
4 Javanmardi S, Bideaux E, Trégouët J, et al. Driving style modelling for eco-driving applications[J]. IFAC-Papers OnLine, 2017, 50(1): 13866-13871.
5 Butakov V, Ioannou P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4422-4431.
6 Higgs B, Abbas M. Segmentation and clustering of car-following behavior: recognition of driving patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 81-90.
7 Mohammadnazar A, Arvin R, Khattak A J. Classifying travelers' driving style using basic safety messages generated by connected vehicles: application of unsupervised machine learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 122:102917.
8 Forster D, Inderka R B, Gauterin F. Data-driven identification of characteristic real-driving cycles based on k-means clustering and mixed-integer optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 69(3): 2398-2410.
9 Wang W S, Xi J Q, Chong A, et al. Driving style classification using a semisupervised support vector machine[J]. IEEE Transactions on Human Machine Systems, 2017, 47(5): 650-660.
10 Han Wei, Wang Wen-Shuo, Li Xiao-Han, et al. Statistical-based approach for driving style recognition using bayesian probability with kernel density estimation[J]. IET Intelligent Transport Systems, 2018, 13(1): 22-30.
11 Wang Wen-Shuo, Xi Jun-Qiang, Zhao Ding. Driving style analysis using primitive driving patterns with bayesian nonparametric approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,20(8): 2986-2998.
12 严英. 纯电动公交客车加速踏板驾驶特性辅助优化策略研究[D].天津:天津大学机械工程学院, 2012.
Yan Ying. Study on the driving assistant of accleration pedal for the pure electric bus[D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2012.
13 叶玉.西方国家力推“生态驾驶”[J].环境与保护,2008,403(9):73-74.
Ye Yu. Western countries push "eco-driving"[J]. Environmental Protection,2008,403(9):73-74.
14 朱嘉欣, 包雨恬, 黎朝. 数据离群值的检验及处理方法讨论[J]. 大学化学, 2018, 33(8): 58-65.
Zhu Jia-xin, Bao Yu-tian, Li Zhao. Discussion on the method for testing and treating outliers[J]. University Chemistry, 2018, 33(8): 58-65.
15 Meenpal T, Goyal A, Meenpal A. Face recognition system based on principal components analysis and distance measures[J]. International Journal of Engineering Technologies IJET, 2021, 7(2): 15-19.
16 吴丽宁. 基于驾驶风格分类的卡车油耗预测[D].西安:长安大学信息工程学院,2020.
Wu Li-ning. Truck fuel consumption prediction based on driving style classification[D]. Xi'an: School of Information Engineering, Chang'an Universty, 2020.
17 Johnstone L M, Lu A Y. On consistency and sparsity for principal components analysis in high dimensions[J]. Journal of the American Statistical Association, 2009, 104(486): 682-693.
18 Clayman C L, Srinivasan S M, Sangwan R S. K-means clustering and principal components analysis of microarray data of L1000 landmark genes[J]. Procedia Computer Science, 2020, 168:97-104.
19 Fu Rui, Liu Tong, Guo Ying-shi, et al. A case study in china to determine whether gps data and derivative indicator can be used to identify risky drivers[J]. Journal of Advanced Transportation, 2019, 2019:1-16.
20 Hidayati R, Zubair A, Pratama A H, et al. Analisis silhouette coefficient pada 6 perhitungan jarak k-means clustering[J]. Techno Com, 2021, 20(2): 186-197.
21 Yang Wen-kang, Du Qiao-ling, Cui Jian-chao, et al. Motion recognition based on sum of the squared errors distribution[J]. IEEE Access, 2021, 9: 37116-37130.
22 Lima S P, Cruz M. A genetic algorithm using calinski-harabasz index for automatic clustering problem[J]. Revista Brasileira de Computação Aplicada, 2020, 12(3): 97-106.
23 Wang Yi-mei, Liu Yong-qian, Li Li, et al. Short-term wind power forecasting based on clustering pre-calculated CFD method[J]. Energies, 2018, 11(4): No.854.
24 余涛. 基于SVM和BP神经网络的短时交通流预测与实现[D]. 南京:南京邮电大学现代邮政学院, 2018.
Yu Tao. Prediction and implementation of short-term traffic based on the combination model of SVM and BP neural networks[D]. Nanjing: School of Modern Posts, Nanjing University of Posts and Telecommunications, 2018.
25 孙宝磊,孙暠,张朝能,等.基于BP神经网络的大气污染物浓度预测[J].环境科学学报,2017,37(5):1864-1871.
Sun Bao-lei, Sun Hao, Zhang Chao-neng, et al. Forecast of air pollutant concentrations by BP neutual network[J]. Acta Scientiae Circumstantiae, 2017,37(5):1864-1871.
26 伍毅平. 生态驾驶行为特征甄别及反馈优化方法研究[D].北京:北京工业大学城市建设学部,2017.
Wu Yi-ping. Research on eco-driving behavior characteristics identification and feedback optimization method[D]. Bejing: Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 2017.
[1] Zhuang-lin MA,Shan-shan CUI,Da-wei HU,Jin WANG. Travel mode choice of traditional car travelers after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1981-1993.
[2] Chao-ying YIN,Ying LU,Chun-fu SHAO,Jian-xiao MA,De-jie XU. Impacts of built environment on commuting mode choice considering spatial autocorrelation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1994-2000.
[3] Can-can SONG,Di-fei JING,Jun-feng XIE,Ke-xin KANG. Analysis on driving behaviors on flat curved sections of highways with advertising signs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1345-1354.
[4] Heng-yan PAN,Yong-gang WANG,De-lin LI,Jun-xian CHEN,Jie SONG,Yu-quan YANG. Evaluating and forecasting rear⁃end collision risk of long longitudinal gradient roadway via traffic conflict [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1355-1363.
[5] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Su-e CAO. Fast outlier mining algorithm in uncertain data set based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1181-1186.
[6] Rong-han YAO,Wen-tao XU,Wei-wei GUO. Drivers' takeover behavior and intention recognition based on factor and long short⁃term memory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 758-771.
[7] Kai LU,Guang-hui XU,Zhi-hong YE,Yong-jie LIN. Algebraic method of bidirectional green wave coordination control for the head of the platoon considering the clearance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 421-429.
[8] Fu-heng QU,Chao-yue QIAN,Yong YANG,Yang LU,Jian-fei SONG,Ya-ting HU. Incremental k⁃means clustering algorithm based on multi⁃sphere splitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1434-1441.
[9] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[10] Xin ZHANG,Wei-hua ZHANG. Safety analysis of main line under different traffic conditions in expressway confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1308-1314.
[11] Shao-bo JI,Yang LI,Meng LI,Shi-bin SU,Xiao-long MA,Shao-qing HE,Guo-rui JIA,Yong CHENG. Influence of driving behavior on energy consumption of pure electric shared vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 754-763.
[12] Han-chao LIAO,Mi-yuan SHAN. Risk identification method of foundation pit engineering of high⁃rise buildings based on fuzzy clustering maximum tree algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2892-2897.
[13] Da-yi QU,Zi-xu ZHAO,Yan-feng JIA,Tao WANG,Qiong-hui LIU. Car⁃following dynamics characteristics and model based on Lennard⁃Jones potential [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2549-2557.
[14] Chun-jiao DONG,Dai-yue DONG,Cheng-xiang ZHU-GE,Li ZHEN. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[15] Da-yi QU,Kai-xian HEI,Hai-bing GUO,Yan-feng JIA,Tao WANG. Game behavior and model of lane-changing on the internet of vehicles environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 101-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!