Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 2016-2028.doi: 10.13229/j.cnki.jdxbgxb.20210974

Previous Articles    

Superhighway virtual track system based on high precision map

Yong-ming HE(),Shi-sheng CHEN,Jia FENG,Ya-nan WAN   

  1. School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2021-09-28 Online:2023-07-01 Published:2023-07-20

Abstract:

To improve the safety of vehicles driving on the superhighway, a virtual track system model of the superhighway based on high precision map is established and analyzed. The virtual track system is composed of high precision map subsystem, positioning subsystem, cloud server subsystem and track keeping subsystem. When the autonomous vehicle is driving on the virtual track, the frequency of the vehicle positioning information will affect the response speed of the vehicle. The minimum positioning return frequency is calculated based on the constraint that the vehicle does not deviate from the virtual track and the lane change safety.When the autonomous vehicle is running on the virtual track, the frequency of vehicle positioning information return affects the response speed of the vehicle. The minimum positioning return frequency is calculated based on the constraint that the vehicle does not deviate from the virtual track and the safety of lane change. If the angle between the center line of the body and the tangent line of the track and the sum of the deflection angle of the front wheel or the lateral deviation distance exceeds the threshold value, the vehicle may deviate from the track, which will trigger the track deviation warning system, and the vehicle will take the maximum safe deflection angle of the front wheel as the reference to the corrected driving trajectory. The research results show that when the vehicle speed is 100, 120, 140, 160, 180 km/h, the system positioning and return frequency is kept above 49, 58, 68, 78, 87 Hz can ensure the vehicle running in the virtual track.

Key words: engineering of communications and transportation system, high precision map, superhighway, virtual track, automatic driving

CLC Number: 

  • U491

Table 1

Classification of superhighways"

超高速公路等级设计速度/(km·h-1
超一级100、120、140
超二级120、140、160
超三级140、160、180

Table 2

Features of high-precision map"

特征解 释
高精度高精地图精度比传统地图高,高精地图的相对精度可以达到10 cm左右,能够满足无人驾驶的需求;高精地图会提供精准的道路环境信息和车道预测信息,不易受环境、天气、温度等影响。
实时性高精地图采用实时通信技术,地图信息更新速度很快,能够及时更新道路信息,以保证车辆实时感知交通动态环境信息。按照更新频率可将所有高精地图数据划分为四类10,如表3所示。
属性信息、语义信息高精地图完整记录了道路的3D属性信息、拓扑关系和路况信息。包括车道的具体属性信息(车道等级、车道宽度、车道功能等),交通基础设施信息(信号灯位置、标志标线、护栏等),周边环境信息(包括路侧建筑物、绿化带等)等静态信息,还有信号配时、机动车、行人和非机动车位置等动态信息11

Table 3

Map data types"

数据类型更新频率内容属性
持续静态数据1个月主要是道路网络、定位数据(路边环境等)等
瞬时静态数据1 h主要是路侧的基础设施的信息,如交通标识和路标
瞬时动态数据1 min主要是红绿灯的相位、交通拥堵等实时路况信息
高度动态数据1 s主要是车辆、行人等交通参与者的实时状态数据

Fig.1

Composition of virtual track system"

Fig.2

Positioning subsystem"

Fig.3

High precision map subsystem and track keeping subsystem"

Fig.4

SLAM principle of high precision map"

Fig.5

Multi location data fusion"

Fig.6

Schematic diagram of virtual track"

Fig.7

Vehicle corner coordinates"

Fig.8

Angle between body centerline and road tangent λ"

Fig.9

Front wheel steering angle β"

Fig.10

Schematic diagram of vehicle deviation distance"

Table 4

Vehicle positioning information feedback frequency of superhighways at all levels"

项目超一级高速公路速度/(km·h-1超二级高速公路速度/(km·h-1超三级高速公路速度/(km·h-1
140120100160140120180160140
最小半径一般值/m14501000700185014501000235018501450
最长更新时间/s0.43790.42430.42600.43280.43790.42430.43360.43280.4379
最小更新频率/Hz2.282.362.352.312.282.362.322.312.29

Table 5

Feedback frequency of vehicle position information at all levels of superhighway"

项目超一级高速公路速度/(km·h-1超二级高速公路速度/(km·h-1超三级高速公路速度/(km·h-1
140120100160140120180160140
最长更新时间/s0.0150.0170.0210.0130.0150.0170.0110.0130.015
最小更新频率/Hz67.5357.8848.2477.1867.5357.8886.8277.1867.53

Table 6

Maximum steering wheel angle at differentspeeds βmax"

φh超一级高速公路/(km·h-1超二级高速公路/(km·h-1超三级高速公路/(km·h-1
140120100160140120180160140
0.32.022.753.961.552.022.751.221.552.02
0.53.374.596.622.583.374.592.042.583.37

Fig.11

Lane departure warning model"

Table 7

Track departure warning strategy"

θλβd是否修正
θ=0d1>0,d2<0
d1>0,d2>0向左修正
d1<0,d2<0向右修正
θ>0

1.λ>0β<0

2.λ<0β>0

d1>0,d2<01?向右修正;2?向左修正
d1>0,d2>01?向右修正;2?向右修正
d1<0,d2<01?向左修正;2?向左修正
θ<0

1.λ>0β<0

2.λ<0β>0

d1>0,d2<01?向左修正;2?向右修正
d1>0,d2>01?向右修正;2?向右修正
d1<0,d2<01?向左修正;2?向左修正
1 何永明, 裴玉龙. 超高速公路发展可行性论证与必要性研究[J]. 公路, 2016, 61(1): 158-162.
He Yong-ming, Pei Yu-long. Feasibility demonstration and necessity analysis on superhighway[J]. Highway, 2016, 61(1): 158-162.
2 蒋勇, 马广才, 刁仁群. 浅谈高速公路限速问题[J]. 交通标准化, 2006 (12): 124-127.
Jiang Yong, Ma Guang-cai, Diao Ren-qun. Discussion on speed limitation of freeway[J]. Communications Standardization, 2006 (12): 124-127.
3 王涛, 陈艳丽, 贾双成. 简述高精地图的特点[J]. 软件, 2018, 39(9): 183-187.
Wang Tao, Chen Yan-li, Jia Shuang-cheng. Brief description of the characteristics of high precision map[J]. Computer Engineering & Software, 2018, 39(9): 183-187.
4 侯凯文. 基于虚拟轨道的自动驾驶车辆管控方法和系统研究[D]. 北京:北京交通大学交通运输学院, 2020.
Hou Kai-wen. Research on method and system of management and control for autonomous vehicles based on virtual track[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2020.
5 李运舵, 车进, 薛澄. 一种点线特征匹配的实时定位及地图重建方法[J]. 激光与光电子学进展,2022,59(2):No.0210003.
Li Yun-duo, Che Jin, Xue Cheng. A method of simultaneous localization and mapping based on point and line feature matching[J]. Laser & Optoelectronics Progress,2022,59(2):No.0210003.
6 何永明. 超高速公路安全保障与经济评价研究[D]. 哈尔滨: 东北林业大学交通学院, 2017.
He Yong-ming. Research safety support and economy evalution of superhighway[D]. Harbin: School of Traffic and Transportation, Northeast Foresty University, 2017.
7 何永明, 裴玉龙. 基于出行费用的超高速公路经济性评价[J]. 公路, 2018, 63(1): 117-123.
He Yong-ming, Pei Yu-long. Economic evaluation of superhighway based on travel cost[J]. Highway, 2018, 63(1): 117-123.
8 何永明, 裴玉龙, 冉斌. 基于智能路钮的超高速公路虚拟轨道系统研究[J]. 交通运输系统工程与信息, 2020, 20(2): 55-60, 75.
He Yong-ming, Pei Yu-long, Ran Bin. Superhighway virtual track system based on intelligent road Button [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 55-60, 75.
9 Liu J, Zhan J, Guo C, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 1-17.
10 王冕. 面向自动驾驶的高精度地图及其应用方法[J]. 地理信息世界, 2020, 27(4): 109-114.
Wang Mian. High definition map for autonomous driving: overview and analysis[J]. Geomatics World, 2020, 27(4): 109-114.
11 訾璐, 张江水, 杨振凯, 等. 高精地图交通要素对象化建模方法[J]. 测绘科学技术学报, 2020, 37(6): 636-642.
Zi Lu, Zhang Jiang-shui, Yang Zhen-kai, et al. Object modeling method of traffic elements in high-precision map[J]. Journal of Geomatics Science and Technology, 2020, 37(6): 636-642.
12 张宁, 马文双. 自动驾驶对于高精地图的技术需求分析[J]. 物流技术与应用, 2020, 25(1): 135-137.
Zhang Ning, Ma Wen-shuang. Analysis on technical requirements of automatic driving for high-precision map[J]. Logistics & Material Handling, 2020, 25(1): 135-137.
13 张进明, 孙灿, 刘兆丹, 等. 智能网联汽车高精地图技术指标及标准化需求研究[J]. 中国汽车, 2019 (10): 49-52.
Zhang Jin-ming, Sun Can, Liu Zhao-dan, et al. Intelligent and connected vehicle high precision map technologyindicator and standardization requirement research[J]. China Auto, 2019(10): 49-52.
14 陈萌, 黄旭. 日本自动驾驶产业发展现状分析[J]. 智能网联汽车, 2019(5): 60-65.
Chen Meng, Huang Xu. Analysis on the development status of automatic driving industry in Japan[J]. Intelligent Connected Vehicles, 2019(5): 60-65.
15 尹彤, 黄鹤, 郭迟, 等. 面向自动驾驶的高精地图生产技术及数据模型标准化探讨[J]. 中国标准化, 2021(4): 33-37.
Yin Tong, Huang He, Guo Chi, et al. Discussion on high-definition map production technology and data model standardization for autonomous driving[J]. China Standardization, 2021(4): 33-37.
16 梁宗正, 童杨. 高精度地图国内外发展现状及对策[J]. 科技中国, 2021(1): 13-16.
Liang Zong-zheng, Tong Yang. Development status and countermeasures of high-precision map at home and abroad[J]. Science and Technology of China, 2021(1): 13-16.
17 徐伟. 超级虚拟轨道快运系统(SRT)特点和适应性分析——以盐城市为例 [J]. 工程技术研究, 2021, 6(5): 40-41, 57.
Xu Wei. Characteristics and adaptability analysis of super virtual rail express system (SRT) -- a case study of Yancheng City[J]. Engineering and Technological Research, 2021, 6(5): 40-41, 57.
18 薄纯玉. 中国中车成功研发全球首列虚拟轨道列车[J] . 城市轨道交通, 2017(2): 38-39.
Bo Chuan-yu. CRRC successfully developed the world's first virtual rail train[J]. China Metros, 2017(2): 38-39.
19 罗毅. 城市新型轨道交通发展的适应性研究——以四川省宜宾市为例[J]. 城市管理与科技, 2019, 21(2): 38-41.
Luo Yi. Study on the adaptability of urban new rail transit development -- a case study of Yibin City, Sichuan Province[J]. Urban Management and Science & Technology, 2019, 21(2):38-41.
20 韩鹏. 基于虚拟轨道的自导向有轨电车控制策略研究[D]. 成都:西南交通大学牵引动力国家重点实验室, 2017.
Han Peng. The comtrol strategy of self-guiding tramcar based on virtual track[D]. Chengdu:State Key Laboratory of Traction Power of Southwest Jiaotong University, 2017.
21 刘建平, 郑阳, 郑望晓. 高精度地图的应用和更新方案[J]. 汽车实用技术, 2021, 46(12): 27-29.
Liu Jian-ping, Zheng Yang, Zheng Wang-xiao. Application and update solution of high definition map[J]. Automobile Applyied Technology, 2021, 46(12): 27-29.
22 姚可星. 高精度GNSS载波相位差分定位技术[D]. 广州: 广东工业大学机电工程学院, 2020.
Yao Ke-xing. GNSS high precision real time kinematic positioning technology[D]. Guangzhou: School of Electromechanical Engineering, Guangdong University of Technology, 2020.
23 郭楠. 基于GNSS/IMU的行人组合导航定位技术研究[D]. 北京:北京建筑大学测绘与城市空间信息学院, 2021.
Guo Nan. Research on pedestrian integrated navigation and positioning technology based on GNSS/IMU[D]. Beijing: School of Geomatics and Urban Upatial Informatics, Beijing University of Civil Engineering and Architecture, 2021.
[1] Guo-zhu CHENG,Lin SHENG,Hao ZHAO,Tian-jun FENG. Exclusive phase setting condition of signalized intersection based on risk analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1962-1969.
[2] Rong-han YAO,Wen-tao XU,Wei-wei GUO. Drivers' takeover behavior and intention recognition based on factor and long short⁃term memory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 758-771.
[3] Xue XIAO,Ke-ping LI,Bo PENG,Man-wei CHANG. Integrated lane⁃changing model of decision making and motion planning for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 746-757.
[4] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[5] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[6] Song FANG,Jian-xiao MA,Gen LI,Ling-hong SHEN,Chu-bo XU. Traffic risk analysis of moving work zone on right lane of city expressway [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1786-1791.
[7] Song-xue GAI,Xiao-qing ZENG,Xiao-yuan YUE,Zi-hao YUAN. Parking guidance model based on user and system bi⁃level optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1344-1352.
[8] Hong-feng XU,Hong-jin CHEN,Dong ZHANG,Qian-hui LU,Na AN,Xian-cai Geng. Fully⁃actuated signal timing technique for isolated signalized intersections in connected vehicle environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1324-1336.
[9] Guo-zhu CHENG,Qiu-yue SUN,Yue-bo LIU,Ji-long CHEN. Cut⁃in behavior model based on game theoretic approach on urban roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2839-2844.
[10] Heng-yan PAN,Wen-hui ZHANG,Bao-yu HU,Zun-yan LIU,Yong-gang WANG,Xiao ZHANG. Construction and robustness analysis of urban weighted subway⁃bus composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2582-2591.
[11] Zhuang-lin MA,Shan-shan CUI,Da-wei HU. Urban residents' low⁃carbon travel intention after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2607-2617.
[12] Jing-xian WU,Hua-peng SHEN,Yin HAN,Min YANG. Residents' commuting time model under the nonlinear impact of urban built environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2568-2573.
[13] Tao PENG,Rui FANG,Xing-liang LIU,Hai-wei WANG,Yan-wei PANG,Hong-guo XU,Fu-ju LIU,Tao WANG. Automatic driving strategy of high⁃speed lane changing in snowy weather based on typical accident scenarios [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2558-2567.
[14] Jie MA,Jia-jun HUANG,Jun TIAN,Yang-hui DONG. Simulation modeling of pedestrian target decision⁃making in evacuation process in transfer corridors of subway stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2600-2606.
[15] Feng XUE,Chuan-lei HE,Qian HUANG,Jian LUO. Coordination degree of multimodal rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2040-2050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!