Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3207-3213.doi: 10.13229/j.cnki.jdxbgxb.20211455

Previous Articles     Next Articles

Remote sensing image denoising method based on curvelet transform and goodness-of-fit test

Li-bo CHENG(),Xin-yue LI,Zhe LI,Xiao-ning JIA   

  1. College of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2021-12-30 Online:2023-11-01 Published:2023-12-06

Abstract:

To solve the denoising problem from visible light remote sensing image, a denoising method for remote sensing image based on Curvelet transformation and Goodness of Fit test is proposed. The method first decomposes the remote sensing image by Curvelet theory to get the decomposition coefficients. Then the method normalizes Curvelet coefficients, and tests the normalized Curvelet coefficients locally by using the goodness of fit test. The real signal coefficients are obtained after the goodness of fit test, and the coefficients are inversely normalized to obtain the inversely normalized Curvelet coefficients. Finally, Curvelet coefficients are inversely transformed to obtain the denoised remote sensing image. The denoising algorithm is compared with Wavelet threshold denoising algorithm, Curvelet threshold denoising algorithm, Discrete wavelet transform and Goodness of Fit test denoising algorithm and Curvelet cyclic translation denoising algorithm. Experimental results show that this algorithm is better than the above algorithms in the indexes of peak signal-to-noise ratio and structural similarity.

Key words: computational mathematics, visible light remote sensing image, Curvelet transform, Goodness of Fit test, image denoising

CLC Number: 

  • TP751

Fig. 1

Comparison of denoising effect of remote sensing image (ImageD) after adding noise (σ=10)"

Fig. 2

Comparison of denoising effect of remote sensing image (ImageA) after adding noise (σ=15)"

Fig. 3

Schematic diagram of denoising and high contrast of remote sensing image (ImageF) after adding noise (σ=10)"

Fig. 4

Schematic diagram of denoising and high contrast of remote sensing image (ImageB) after adding noise (σ=20)"

Fig. 5

Comparison of denoising effect of remote sensing image (ImageC) after adding noise (σ=20)"

Fig. 6

Comparison of denoising effect of remote sensing image (ImageE) after adding noise (σ=25)"

Table 1

Evaluation index results of denoising effect using different algorithms for remote sensing images"

图像算法σ=10σ=15σ=20σ=25
PSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIM
ImageA小波阈值去噪28.510.75126.020.64524.200.55422.780.478
曲波阈值去噪29.080.80626.720.75525.240.71724.350.688
GOF-DWT去噪28.990.81627.020.77325.660.73924.560.685
曲波循环平移去噪29.800.82727.700.78126.370.74825.480.722
GOF-Curvelet去噪31.120.83528.730.78527.150.73325.950.685
ImageB小波阈值去噪28.270.75025.940.65124.210.56422.840.491
曲波阈值去噪29.030.80426.860.75525.420.71624.520.687
GOF-DWT去噪28.530.78926.750.74625.470.71024.450.678
曲波循环平移去噪29.790.82127.800.77426.520.74125.660.713
GOF-Curvelet去噪30.670.83528.640.78327.190.73425.890.682
ImageC小波阈值去噪26.270.74024.690.66223.510.59322.480.530
曲波阈值去噪27.310.77425.430.69324.320.63123.610.583
GOF-DWT去噪26.860.74425.420.67224.300.60723.610.562
曲波循环平移去噪27.980.80326.040.71824.900.65224.100.601
GOF-Curvelet去噪28.490.80626.900.75025.640.69524.700.648
ImageD小波阈值去噪26.720.77324.540.67922.990.59721.750.524
曲波阈值去噪27.630.80424.950.73523.310.67822.240.631
GOF-DWT去噪28.200.82026.150.77124.830.73123.660.690
曲波循环平移去噪28.460.82126.050.76424.550.71923.560.683
GOF-Curvelet去噪29.400.83327.240.78425.740.73824.540.690
1 Gao J. Editorial for the special issue "ecosystem services with remote sensing"[J]. Remote Sensing, 2020, 12(14): 12142191.
2 Cao D G, Xing H F, Wong M S, et al. A stacking ensemble deep learning model for building extraction from remote sensing images[J]. Remote Sensing, 2021, 13(19): 13193898.
3 唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261.
Tang Yao, Wang Li-juan, Ma Guo-chao, et al. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252-261.
4 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197.
Zhou Pei-cheng, Cheng Gong, Yao Xi-wen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182-197.
5 Marston J M, D'Alpoim Guedes J, Warinner C. Method and Theory in Paleoethnobotany[M]. Denver: University Press of Colorado, 2014.
6 Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
7 Cai T T, Silverman B W. Incorporating information on neighbouring coefficients into wavelet estimation[J]. The Indian Journal of Statistics, Series B, 2001, 63(2): 127-148.
8 Chen G Y, Bui T D, Krzyżak A. Image denoising with neighbour dependency and customized wavelet and threshold[J]. Pattern Recognition, 2005, 38(1): 115-124.
9 Zhou D W, Cheng W G. Image denoising with an optimal threshold and neighbouring window[J]. Pattern Recognition Letters, 2008, 29(11): 1694-1697.
10 杨恢先, 王绪四, 谢鹏鹤, 等. 改进阈值与尺度间相关的小波红外图像去噪[J]. 自动化学报, 2011, 37(10): 1167-1174.
Yang Hui-Xian, Wang Xu-si, Xie Peng-he, et al. Infrared image denoising based on improved threshold and inter-scale correlations of wavelet transform[J]. Acta Automatica Sinica, 2011, 37(10): 1167-1174.
11 Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transform[J]. SIAM Journal on Multiscale Modeling and Simulation, 2006, 5(3): 861-899.
12 Rahman S M M, Ahmad M O, Swamy M N S. Bayesian wavelet-based image denoising using the Gauss-Hermite expansion[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1755-1771.
13 Sinthuja S, Saravanan S. GIS based satellite image de-noising using curvelet transform[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2017, 8(3): 654- 656.
14 Wu C, Ma X, Wang W. Hyperspectral image denoise based on curvelet transform combined with weight coefficient method[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(4): 4425-4429.
15 Raju C, Reddy T S, Sivasubramanyam M. Denoising of remotely sensed images via curvelet transform and its relative assessment[J]. Procedia Computer Science, 2016, 89: 771-777.
16 李雄飞, 宋璐, 张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报: 工学版, 2019, 49(4): 1307-1319.
Li Xiong-fei, Song Lu, Zhang Xiao-Li. Remote sensing image fusion based on cooperative empirical wavelet transform[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1307-1319.
17 刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.
LIU Di, Jia Jin-lu, Zhao Yu-Qing, et al. Overview of image denoising methods based on depth learning[J]. Computer Engineering and Applications, 2021, 57(7): 1-13.
18 Isola P, Zhu J Y, Zhou T, et al. Image to image translation with conditional adversarial networks[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 1125-1134.
19 Zeng J, Pang J, Sun W, et al. Deep graph Laplacian regularization for robust denoising of real images[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1759-1768.
20 王智文, 李绍滋. 基于多元统计模型的分形小波自适应图像去噪[J]. 计算机学报, 2014, 37(6): 1380-1389.
Wang Zhi-wen, Li Shao-zi. Adaptive fractal-wavelet image denoising base on multivariate statistical model[J]. Chinese Journal of Computers, 2014, 37(6): 1380-1389.
21 Cui Y Q, Wang K. Image denoising based on local statistical models in wavelet domain[J]. Opto-Electronic Engineering, 2007, 34(3): 93-97.
22 Bacchelli S, Papi S. Statistically based multiwavelet de-noising[J]. Journal of Computational and Applied Mathematics, 2007, 210(1/2): 47-55.
23 赵海英, 张小利, 李雄飞, 等. 基于多尺度Meanshift图像去噪算法[J]. 吉林大学学报: 工学版, 2014, 44(5): 1417-1422.
Zhao Hai-ying, Zhang Xiao-li, Li Xiong-fei, et al. Image denoising algorithm based on multi-scale meanshift[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(5): 1417-1422.
24 Tian J, Chen L, Ma L H. A wavelet-domain non-parametric statistical approach for image denoising[J]. IEICE Electronics Express, 2010, 7(18): 1409-1415.
25 Boubchir L, Boashash B. Wavelet denoising based on the MAP estimation using the BKF Prior with application to images and EEG signals[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1880-1894.
26 Naveed K, Shaukat B, Ehsan S, et al. Multiscale image denoising using Goodness-of-Fit test based on EDF statistics[J]. PLoS ONE, 2019, 14(5): 0216197.
27 Naveed K, Rehman N U. Wavelet based multivariate signal denoising using Mahalanobis distance and EDF statistics[J]. IEEE Transactions on Signal Processing, 2020, 68: 5997-6010.
28 Anderson T W, Darling D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 268(49): 765-769.
29 Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[1] Zhi-dan CAI,Ming FANG,Zhe LI,Jia-lu XU. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2649-2658.
[2] WU Kai-jun, WANG Chun-li, SHAN Ya-zhou, DU San-shan, LU Huai-wei. Chemical synapse coupling synchronization of Hindmarsh-Rose neurons under Gauss white noise [J]. 吉林大学学报(工学版), 2017, 47(5): 1554-1560.
[3] JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[4] ZHANG Tian, SUN Yan-kui, TIAN Xiao-lin. Optical coherence tomography image denoising method by merging dyadic wavelet and anisotropic diffusion filter [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 340-344.
[5] Zhang Qiang,Guo Bao-long . Image fusion algorithm using Curvelet transform [J]. 吉林大学学报(工学版), 2007, 37(02): 458-0463.
[6] Cui Yan-qiu;Wang Ke;Sun Wei. Image denoising method based on adaptive Gaussian mixture
model in wavelet domain
[J]. 吉林大学学报(工学版), 2006, 36(06): 983-0988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .