Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3207-3213.doi: 10.13229/j.cnki.jdxbgxb.20211455
Previous Articles Next Articles
Li-bo CHENG(),Xin-yue LI,Zhe LI,Xiao-ning JIA
CLC Number:
1 | Gao J. Editorial for the special issue "ecosystem services with remote sensing"[J]. Remote Sensing, 2020, 12(14): 12142191. |
2 | Cao D G, Xing H F, Wong M S, et al. A stacking ensemble deep learning model for building extraction from remote sensing images[J]. Remote Sensing, 2021, 13(19): 13193898. |
3 | 唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261. |
Tang Yao, Wang Li-juan, Ma Guo-chao, et al. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252-261. | |
4 | 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197. |
Zhou Pei-cheng, Cheng Gong, Yao Xi-wen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182-197. | |
5 | Marston J M, D'Alpoim Guedes J, Warinner C. Method and Theory in Paleoethnobotany[M]. Denver: University Press of Colorado, 2014. |
6 | Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. |
7 | Cai T T, Silverman B W. Incorporating information on neighbouring coefficients into wavelet estimation[J]. The Indian Journal of Statistics, Series B, 2001, 63(2): 127-148. |
8 | Chen G Y, Bui T D, Krzyżak A. Image denoising with neighbour dependency and customized wavelet and threshold[J]. Pattern Recognition, 2005, 38(1): 115-124. |
9 | Zhou D W, Cheng W G. Image denoising with an optimal threshold and neighbouring window[J]. Pattern Recognition Letters, 2008, 29(11): 1694-1697. |
10 | 杨恢先, 王绪四, 谢鹏鹤, 等. 改进阈值与尺度间相关的小波红外图像去噪[J]. 自动化学报, 2011, 37(10): 1167-1174. |
Yang Hui-Xian, Wang Xu-si, Xie Peng-he, et al. Infrared image denoising based on improved threshold and inter-scale correlations of wavelet transform[J]. Acta Automatica Sinica, 2011, 37(10): 1167-1174. | |
11 | Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transform[J]. SIAM Journal on Multiscale Modeling and Simulation, 2006, 5(3): 861-899. |
12 | Rahman S M M, Ahmad M O, Swamy M N S. Bayesian wavelet-based image denoising using the Gauss-Hermite expansion[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1755-1771. |
13 | Sinthuja S, Saravanan S. GIS based satellite image de-noising using curvelet transform[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2017, 8(3): 654- 656. |
14 | Wu C, Ma X, Wang W. Hyperspectral image denoise based on curvelet transform combined with weight coefficient method[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(4): 4425-4429. |
15 | Raju C, Reddy T S, Sivasubramanyam M. Denoising of remotely sensed images via curvelet transform and its relative assessment[J]. Procedia Computer Science, 2016, 89: 771-777. |
16 | 李雄飞, 宋璐, 张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报: 工学版, 2019, 49(4): 1307-1319. |
Li Xiong-fei, Song Lu, Zhang Xiao-Li. Remote sensing image fusion based on cooperative empirical wavelet transform[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1307-1319. | |
17 | 刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13. |
LIU Di, Jia Jin-lu, Zhao Yu-Qing, et al. Overview of image denoising methods based on depth learning[J]. Computer Engineering and Applications, 2021, 57(7): 1-13. | |
18 | Isola P, Zhu J Y, Zhou T, et al. Image to image translation with conditional adversarial networks[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 1125-1134. |
19 | Zeng J, Pang J, Sun W, et al. Deep graph Laplacian regularization for robust denoising of real images[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1759-1768. |
20 | 王智文, 李绍滋. 基于多元统计模型的分形小波自适应图像去噪[J]. 计算机学报, 2014, 37(6): 1380-1389. |
Wang Zhi-wen, Li Shao-zi. Adaptive fractal-wavelet image denoising base on multivariate statistical model[J]. Chinese Journal of Computers, 2014, 37(6): 1380-1389. | |
21 | Cui Y Q, Wang K. Image denoising based on local statistical models in wavelet domain[J]. Opto-Electronic Engineering, 2007, 34(3): 93-97. |
22 | Bacchelli S, Papi S. Statistically based multiwavelet de-noising[J]. Journal of Computational and Applied Mathematics, 2007, 210(1/2): 47-55. |
23 | 赵海英, 张小利, 李雄飞, 等. 基于多尺度Meanshift图像去噪算法[J]. 吉林大学学报: 工学版, 2014, 44(5): 1417-1422. |
Zhao Hai-ying, Zhang Xiao-li, Li Xiong-fei, et al. Image denoising algorithm based on multi-scale meanshift[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(5): 1417-1422. | |
24 | Tian J, Chen L, Ma L H. A wavelet-domain non-parametric statistical approach for image denoising[J]. IEICE Electronics Express, 2010, 7(18): 1409-1415. |
25 | Boubchir L, Boashash B. Wavelet denoising based on the MAP estimation using the BKF Prior with application to images and EEG signals[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1880-1894. |
26 | Naveed K, Shaukat B, Ehsan S, et al. Multiscale image denoising using Goodness-of-Fit test based on EDF statistics[J]. PLoS ONE, 2019, 14(5): 0216197. |
27 | Naveed K, Rehman N U. Wavelet based multivariate signal denoising using Mahalanobis distance and EDF statistics[J]. IEEE Transactions on Signal Processing, 2020, 68: 5997-6010. |
28 | Anderson T W, Darling D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 268(49): 765-769. |
29 | Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. |
[1] | Zhi-dan CAI,Ming FANG,Zhe LI,Jia-lu XU. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2649-2658. |
[2] | WU Kai-jun, WANG Chun-li, SHAN Ya-zhou, DU San-shan, LU Huai-wei. Chemical synapse coupling synchronization of Hindmarsh-Rose neurons under Gauss white noise [J]. 吉林大学学报(工学版), 2017, 47(5): 1554-1560. |
[3] | JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366. |
[4] | ZHANG Tian, SUN Yan-kui, TIAN Xiao-lin. Optical coherence tomography image denoising method by merging dyadic wavelet and anisotropic diffusion filter [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 340-344. |
[5] | Zhang Qiang,Guo Bao-long . Image fusion algorithm using Curvelet transform [J]. 吉林大学学报(工学版), 2007, 37(02): 458-0463. |
[6] |
Cui Yan-qiu;Wang Ke;Sun Wei.
Image denoising method based on adaptive Gaussian mixture model in wavelet domain [J]. 吉林大学学报(工学版), 2006, 36(06): 983-0988. |
|