Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1045-1057.doi: 10.13229/j.cnki.jdxbgxb.20220699

Previous Articles    

Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer

Tong-tong WAN1(),Hai-nian WANG1(),Wen-hua ZHENG1,Po-nan FENG1,Yu CHEN1,Chen ZHANG2   

  1. 1.Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang'an University,Xi'an 710064,China
    2.School of Energy and Architecture,Xi'an Aeronautical Institute,Xi'an 710077,China
  • Received:2022-05-23 Online:2024-04-01 Published:2024-05-17
  • Contact: Hai-nian WANG E-mail:wantongtong@chd.edu.cn;wanghn@chd.edu.cn

Abstract:

To reveal the coordinated deformation mechanism of temperature shrinkage between unbound aggregate base layer and asphalt mixture overlay, the dynamic and static strain acquisition system was adopted to obtain the thermal contraction strain of asphalt mixture layer in real time. And the continuum-discrete coupling model of composite structure was constructed based on PFC6.0 Suite and FLAC3D software. The macro- and meso-response law of unbound aggregate layer and asphalt mixture overlay were investigated. The results show that the continuous-discrete coupling model has higher consistency with the laboratory test than the continuum model, and the relative error of temperature shrinkage coefficient is 8.1%. The thermal strain-time curves of asphalt mixture and its composited specimens exhibit a nonlinear change law of first fast and then slow. And the asphalt mixture types and cooling temperature differences have little effect on the constraint action of unbound aggregate layer. The temperature shrinkage deformation occurred within the first hour, where the asphalt mixture layer gradually changed from "warp" to "gentle". The coordinated deformation between unbound aggregate base layer and asphalt mixture layer can be realized by particle contact recombination, the inwardly extruded movement of particles, loose on both ends and the middle compaction. In this paper, the coordinated deformation mechanism of temperature shrinkage was revealed from the macroscopic strain response, voids, coordination number and three-dimensional fabric change. A theoretical foundation for researching low temperature cracking resistant of asphalt pavement with unbound aggregate base layer can be improved.

Key words: road engineering, coordinated deformation, FEM-DEM coupling, thermal cracking, unbound aggregate, mesoscopic response

CLC Number: 

  • U416

Table 1

Gradation of unbound aggregate materials"

筛孔孔径/mm设计级配/%筛孔孔径/mm设计级配/%
31.5100.02.3620.8
26.5100.01.1813.2
19.080.60.68.5
16.072.00.35.4
13.263.60.153.5
9.551.30.0752.2
4.7532.7

Table 2

Gradation of asphalt mixtures"

筛孔孔径/mmSMA13AC16AC20
26.5100.0100100.0
19.010010096.0
16.010097.285.0
13.298.082.071.2
9.564.069.060.7
4.7531.448.840.9
2.3621.832.130.2
1.1817.024.022.0
0.614.816.316.3
0.313.113.211.2
0.1511.78.68.6
0.07510.54.25.2

Table 3

Technical specifications of emulsified asphalt for interlayer bonding"

指标类型性能指标(Ⅰ型)指标值
破乳速度快裂、中裂和慢裂慢裂
黏度/S8~2020
筛上残留物/%≤0.10.05
蒸发残留物溶解度/%≥5050
粒子电荷非离子(+)
贮存稳定性(5 d)≥3060
固含量/%≥50≥50

Fig.1

Molding diagram of composite structure specimen"

Fig.2

Thermal contraction tests"

Fig.3

Schematic diagram of composite structure specimen simulation model"

Table 4

FLAC model parameters of specimen materials"

材 料力学参数温缩参数
弹性模量E/MPa泊松比/υ内摩擦角φ/(°)内聚力c/kPa导热系数/[W·(m·K)-1热容量/[J·(kg·℃)-1
SMA137 5000.25//1.361 080
AC168 5000.25//1.33980
AC209 0000.25//1.22900
级配碎石2800.3537.469.11.20600

Table 5

Discrete element model parameters of unbound aggregates layer and inter bonding layer"

类 别参 数数 值
级配碎石颗粒参数颗粒密度/(kg·m-32 600
阻尼比0.7
空隙率0.24
粘结层颗粒参数颗粒密度/(kg·m-32 200
阻尼比0.7
空隙率0.01
平行粘结有效模量/MPa100
法向粘结强度/MPa100
切向粘结强度/MPa100
接触刚度比1.0
摩擦因数0.35
线性接触参数有效模量/MPa450
接触刚度比1.4
摩擦因数0.45

Fig.4

Elastic-plastic model of unbound aggregates"

Fig.5

Triaxial shear test of unbound aggregates"

Fig.6

Thermal contraction ctrain law"

Table 6

Thermal Contraction Coefficient of Asphalt Mixture and its Combination"

沥青混合料类型温缩系数/(10-6·℃-1限制应变系数
10~0 ℃10~-10 ℃10~-20 ℃10~0 ℃10~-10 ℃10~-20 ℃
SMA13-1/5处36.24142.8
SMA13-3/5处32.337.839.5
均值34.239.442.1
SMA13组合试件-1/5处30.836.238.4

0.12

0.12

0.13

SMA13组合试件-3/5处29.333.634.7
均值30.134.936.6
AC16-1/5处29.332.838.7
AC16-3/5处26.627.729.8
均值28.030.234.3
AC16组合试件-1/5处26.327.631.2

0.11

0.12

0.13

AC16组合试件-3/5处23.625.628.3
均值25.026.629.7
AC20-1/5处25.326.631.0
AC20-3/5处21.120.923.6
均值23.223.727.3
AC20组合试件-1/5处22.320.326.4

0.10

0.17

0.11

AC20组合试件-3/5处19.518.822.3
均值20.919.624.2

Fig.7

Composite structure specimens of SMA13"

Table 7

Strain error of temperature shrinkage coefficient of specimens with different models"

温缩试验温缩系数/(10-6·℃-1
SMA13AC16AC20
10 ℃20 ℃30 ℃10 ℃20 ℃30 ℃10 ℃20 ℃30 ℃
室内组合试件-1/5处30.836.238.426.427.631.222.318.824.0
室内组合试件-3/5处29.333.634.723.625.628.319.520.326.4
FEM-DEM耦合模型-1/5处32.637.337.326.929.030.121.420.025.2
FEM-DEM耦合模型-3/5处29.634.034.124.526.527.519.218.022.7
相对误差-1/5处/%-5.8-3.12.7-1.9-4.93.73.8-6.4-5.1
相对误差-3/5处/%-1.2-1.21.9-3.9-3.52.61.56.58.1
FEM-MC模型-1/5处33.437.740.829.331.232.024.622.928.3
FEM-MC模型-3/5处30.535.736.627.129.530.822.120.826.5
相对误差-1/5处/%-8.4-4.1-6.3-11.2-12.7-2.5-10.7-21.5-18.0
相对误差-3/5处/%-4.1-6.3-5.4-14.9-15.1-8.9-13.4-2.4-0.5
FEM-Linear模型-1/5处36.338.941.529.832.133.324.923.329.3
FEM-Linear模型-3/5处32.737.537.726.829.030.021.920.525.8
相对误差-1/5处/%-17.9-7.5-8.2-13.0-16.3-6.8-11.8-23.7-22.3
相对误差-3/5处/%-11.6-11.6-8.5-13.7-13.0-6.2-12.3-0.82.2

Fig.8

Distribution of collection points for thermal shrinkage deformation"

Fig.9

Temperature shrinkage deformation of combined structure at transverse and longitudinal monitoring points"

Fig.10

Schematic diagram of particle displacement vector of unbound aggregate layer at different time stages"

Fig.11

Void change in unbound aggregate layer"

Fig.12

Coordination number changing law of unboundaggregate layer"

Fig.13

Particles contact changes of unbound aggregate layers in different states"

1 孙红燕. 沥青路面低温开裂力学分析[D]. 西安:长安大学公路学院, 2013.
Sun Hong-yan. Mechanical analysis of asphalt pavement low temperature cracking[D]. Xi'an: College of Highway, Chang'an University, 2013.
2 Marasteanu M O, Li X, Clyne T R, et al. Low temperature cracking of asphalt concrete pavements[R]. Minnesota: Minnesota Department of Transportation, 2004.
3 冯德成, 崔世彤, 易军艳, 等. EBBR试验下沥青结合料低温性能评价指标[J]. 交通运输工程学报, 2021, 21(5):94-103.
Feng De-cheng, Cui Shi-tong, Yi Jun-yan, et al. Low temperature performance evaluation indexes of asphalt binder based on EBBR test[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5):94-103.
4 Tan YQ, Zhang L, Xu H N. Evaluation of low-temperature performance of asphalt paving mixtures[J]. Cold Regions Science and Technology, 2012, 70: 107-112.
5 Canestrari F, Stimilli A, Bahia H U, et al. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain[J]. Materials and Design, 2015, 76:141-149.
6 孙志棋. 基于收缩-松弛竞争机制的沥青混合料低温开裂机理研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2020.
Sun Zhi-qi. The thermal cracking mechanism of asphalt mixtures based on the contraction-relaxation competition[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2020.
7 Dave E V, Buttlar W G, Leon S E, et al. IlliTC–low-temperature cracking model for asphalt pavements[J]. Road Materials and Pavement Design, 2013, 14(2): 57-78.
8 Sun Z Q, Xu Y L, Tan Y Q, et al. Investigation of sand mixture interlayer reducing the thermal constraint strain in asphalt concrete overlay[J]. Construction and Building Materials, 2018, 171: 357-366.
9 Prieto-Muñoz P A, Yin H M, Buttlar W G. Two-dimensional stress analysis of low-temperature cracking in asphalt overlay/substrate systems[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1228-1238.
10 Timm D H, Guzina B B, Voller V R. Prediction of thermal crack spacing[J]. International Journal of Solids and Structures, 2003, 40(1): 125-142.
11 Xu Y L, Shan L Y, Sun Z Q. Effect of a sand mix interlayer on thermal cracking in overlays[J]. Journal of Materials in Civil Engineering, 2014, 26(9):No. 04014049.
12 吴倩. 控制横向开裂率的沥青路面结构组合研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2016.
Wu Qian. Research on asphalt pavement structure combination in order to control transverse cracking rate[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2016.
13 Ahmed I, Thom N, Zaidi S B A, et al. A mechanistic approach to evaluate the fatigue life of inverted pavements[J]. Construction and Building Materials, 2021, 311:No.125288.
14 曹明明. 刚柔复合式基层沥青路面结构特征与荷载响应分析[D]. 成都:西南交通大学土木工程学院, 2018.
Cao Ming-ming. Analysis on structural characteristics and load responses for rigid and flexible composite base asphalt pavement[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong Univeristy, 2018.
15 Su N Y, Xiao F P, Wang J G, et al. Characterizations of base and subbase layers for mechanistic-empirical pavement design[J]. Construction and Building Materials, 2017, 152: 731-745.
16 汪海年,张然,周俊,等.土工格室加筋碎石基层变形机理的数值模拟[J].中南大学学报:自然科学版, 2015,46(12): 4640-4646.
Wang Hai-nian, Zhang Ran, Zhou Jun, et al. Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University(Science and Technology), 2015,46(12): 4640-4646.
17 刘中林. 河北省高速公路沥青路面技术后评估研究[R].石家庄:河北省交通规划设计院, 2017.
18 马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2011:2-13.
Ma Hong-yan. The verification and improvement on asphalt pavement low temperature cracking perdiction model of AASHTO[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2011:2-13.
19 Ma H Y, Wang D S, Zhou C J, et al. Calibration on MEPDG low temperature cracking model and recommendation on asphalt pavement structures in seasonal frozen region of China[J]. Advances in Materials Science and Engineering, 2015, 19(2): 259-272.
20 Yin H M, Buttlar W G, Paulino G H. A two-dimensional elastic model of pavements with thermal failure discontinuities[C]∥Proceedings of the 3rd MIT Conf Comput Fluid Solid Mech, Cambridge, USA, 2005: 539-542.
21 Chen J Q, Chu R X, Wang H, et al. Experimental measurement and microstructure-based simulation of thermal conductivity of unbound aggregates[J]. Construction and Building Materials, 2018, 189: 8-18.
22 Zhang Y Q, Gu F, Luo X, et al. Modeling stress-dependent anisotropic elastoplastic unbound granular base in flexible pavements[J]. Transportation Research Record, 2018, 2672(52): 46-56.
23 王赫. 基于三维离散单元法的级配碎石动三轴数值试验研究[D]. 西安:长安大学公路学院, 2017.
Wang He. Research on dynamic triaxial numerical simulation of graded broken stones based on three - dimensional discrete element method[D]. Xi′an: College of Highway, Chang′an University, 2017.
24 刘玉,赵谟涵,吴超凡,等. 基于离散-连续耦合的落锤-路面动态相互作用研究[J]. 中国公路学报, 2020, 206(10): 150-162.
Liu Yu, Zhao Mo-han, Wu Chao-fan, et al. Coupled discrete-continuous simulation and analysis of dynamic interactions between hammer and pavement[J]. China Journal Highway and Transportation, 2020, 206(10): 150-162.
25 Jia M C, Yang Y, Liu B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils[J]. Granular Matter, 2018, 20(4): 1-15.
26 Haddad H, Guessasma M, Fortin J. Heat transfer by conduction using DEM-FEM coupling method[J]. Computational Materials Science, 2014, 81: 339-347.
27 Sánchez-Leal F J. Gradation chart for asphalt mixes: development[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 185-197.
28 交通运输部公路科学研究院. 公路土工试验规程 [S].北京:人民交通出版社,2020.
29 杨光, 王旭东, 张晨晨. 一种基于实时温度-应变采集的沥青混合料温缩特性测试方法[J]. 中外公路, 2015, 35(1): 259-262.
Yang Guang, Wang Xu-dong, Zhang Chen-chen. A method for measuring temperature shrinkage characteristics of asphalt mixture based on real-time temperature-strain acquisition[J]. Journal of China and Foreign Highway, 2015, 35(1): 259-262.
30 Tan Y Q, Sun Z Q, Gong X B, et al. Design parameter of low-temperature performance for asphalt mixtures in cold regions[J]. Construction and Building Materials, 2017, 155: 1179-1187.
31 朱洪洲, 雷蕾, 范世平, 等. 沥青路面温度应力影响因素研究综述[J]. 科学技术与工程, 2021,21(13): 5188-5200.
Zhu Hong-zhou, Lei Lei, Fan Shi-ping, et al. Review of research on influence factors of asphalt pavement thermal stress[J]. Science Technology and Engineering, 2021,21(13): 5188-5200.
32 延西利, 李绪梅, 孙毅, 等. 基于傅立叶导热定律的沥青混合料热传导试验[J]. 交通运输工程学报, 2013(6): 1-6.
Yan Xi-li, Li Xu-mei, Yi Suan, et al. Heat conduction epertiment of asphalt mixture based on fourier's heat conduction law[J]. Journal of Traffic and Transportation Engineering, 2013(6): 1-6.
33 李改. 级配碎石基层与沥青混合料的层间粘结行为及其对路用性能影响研究[D]. 重庆:重庆交通大学土木工程学院, 2015: 34-46.
Li Gai. Research on the bonding behavior between graded crushed stone and asphalt layer and the impact of road performance[D]. Chongqing: College of Civil Engineering, Chongqing Jiaotong University, 2015: 34-46.
34 Lekarp F, Isacsson U, Dawson A. State of the art. I: resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75.
35 Li S H, Hao P W. Stress dependent and redistribution behaviour of unbound granular material[J]. International Journal of Pavement Engineering, 2020, 21(3): 347-56.
36 Liu Y, You Z P, Li L, et al. Review on advances in modeling and simulation of stone-based paving materials[J]. Construction and Building Materials, 2013, 43: 408-417.
[1] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[2] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[3] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[4] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[5] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[6] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[7] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[8] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[9] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
[10] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
[11] Yan LI,Jiu-peng ZHANG,Zi-xuan CHEN,Guo-jing HUANG,Pei WANG. Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1729-1735.
[12] Zhuang-zhuang LIU,Wen-qing ZHENG,Jian ZHENG,Yi-zheng LI,Peng-yu JI,Ai-min SHA. Pavement surface temperature monitoring method based on gridding approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1746-1755.
[13] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[14] Bing HUI,Xin-yi YANG,Le-yang ZHANG,Yang LI. Influence of detecting track offset on calculation error of asphalt pavement wearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1756-1764.
[15] Jue LI,An-shun ZHANG,Jun-hui ZHANG,Jun-feng QIAN. Model testing and numerical analysis of dynamic response of graded crushed rock base structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1782-1789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!