Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (6): 1729-1735.doi: 10.13229/j.cnki.jdxbgxb.20221124

Previous Articles    

Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM

Yan LI1(),Jiu-peng ZHANG1(),Zi-xuan CHEN1,Guo-jing HUANG1,Pei WANG2   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.Guangdong Communication Planning & Design Institute Group Co. ,Ltd. ,Guangzhou 510507,China
  • Received:2022-08-30 Online:2023-06-01 Published:2023-07-23
  • Contact: Jiu-peng ZHANG E-mail:liyan@chd.edu.cn;jiupengzhang@chd.edu.cn

Abstract:

In order to reasonably conduct a comprehensive evaluation of asphalt pavement performance, a PCA-PSO-SVM evaluation model based on principal component analysis and particle swarm optimization support vector machine is proposed to address the problems of the strong subjectivity of traditional pavement performance evaluation methods and the defects of existing models. The evaluation indicators are dimensionally reduced by Principal Component Analysis (PCA) to form mutually independent principal components. The key parameters of the Support Vector Machine (SVM)—the penalty coefficient C and the kernel function parameter g are optimized using the global search advantage of the Particle Swarm Algorithm (PSO) to improve model accuracy. Finally, 170 maintenance sections of a highway in the southwest region were used as an example to evaluate the pavement performance comprehensively using the PCA-PSO-SVM model and“Highway performance assessment standards”respectively. The results show that the PCA-PSO-SVM model overcomes the drawbacks of relying on empirical methods of determining parameters, improves the identification accuracy and makes the evaluation results more in line with the actual road conditions.

Key words: road engineering, asphalt pavement performance evaluation, principal component analysis, particle swarm algorithm, support vector machine

CLC Number: 

  • U414

Fig.1

Schematic diagram of SVM"

Fig.2

Flow chart of PCA-PSO-SVM model"

Table 1

Data from the test set"

路段序号PCIRQIRDIPBISRI标签
1-1.950-2.0120.002-0.829-0.8823
2-1.8380.5430.0950.6130.8501
30.0100.4290.279-1.5500.5392
40.5240.5100.9720.613-2.2481
50.492-0.9220.695-0.8290.2392
60.7160.5430.1410.613-1.0491
70.7160.461-0.460-2.2711.1502
80.7160.3640.1870.6130.5501
9-1.870-2.988-2.307-0.108-1.1603
100.7160.5430.7880.6130.2621
110.7160.5260.6030.613-1.9481
120.3470.5750.1410.6130.5951
130.074-1.280-2.9540.6131.7611
140.2990.5920.0950.6130.0511
150.4750.168-0.229-2.271-0.2722
160.7160.5590.3260.6130.1391
17-0.5850.217-0.460-0.1080.2732
18-1.7090.3470.2330.6130.6061
190.7160.5751.0190.6130.3731
200.7160.2500.8340.6130.1731

Fig.3

Correlation analysis between evaluation indicators"

Table 2

Variance contribution rate of asphalt pavement performance indicators"

成分初始特征值提取载荷平方和
总计方差百分比累积 %总计方差百分比累积 %
12.11142.22442.2242.11142.22442.224
21.16523.29065.5141.16523.29065.514
31.03719.73585.2491.03719.73585.249
40.58510.69395.942---
50.2034.058100.000---

Table 3

Test set principal component data"

路段F1F2F3标签
1-2.299-1.289-0.9793
2-0.5090.0651.1741
30.1041.141-1.0762
41.423-2.045-0.6291
5-0.0840.324-0.9042
60.971-0.8440.0031
7-0.1172.2851.3782
80.7600.4020.6281
9-4.018-1.534-0.1523
101.2350.0820.4111
111.295-1.673-0.4601
120.6710.4020.7461
13-2.4581.5201.6691
140.674-0.0370.5311
15-0.1730.960-2.0032
160.9910.0830.4551
17-0.4690.2660.2262
18-0.465-0.1731.0051
191.3770.1300.4141
201.089-0.0650.3331

Fig.4

Adaptation curves"

Fig.5

Comparison of assessment results"

1 Chen W, Zheng M L. Multi-objective optimization for pavement maintenance and rehabilitation decision-making: a critical review and future directions[J]. Automation in Construction, 2021, 130: No.103840.
2 Cristina T M, Eugenio P, Víctor Y. Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions[J]. Journal of Cleaner Production, 2017, 148: 90-102.
3 . 公路技术状况评定标准 [S].
4 Pedro M, Maria L A, Eduardo F, et al. Machine learning approach for pavement performance prediction[J]. International Journal of Pavement Engineering, 2021, 22(3): 341-354.
5 周育名, 李金明, 李平, 等. 考虑公路等级的沥青路面性能衰变预测方法[J]. 中外公路, 2019, 39(1):34-39.
Zhou Yu-ming, Li Jin-ming, Li Ping, et al. Performance decay prediction method of asphalt pavement considering highway grade[J]. Journal of China & Foreign Highway, 2019, 39(1): 34-39.
6 Wang K, Qiang L. Gray clustering-based pavement performance evaluation[J]. Journal of Transportation Engineering, 2010, 136(1): 38-44.
7 宋俊敏, 李明, 范虎彪, 等. 基于BP神经网络的路面使用性能评价方法研究[J]. 公路, 2008(12): 140-144.
Song Jun-min, Li Ming, Fan Hu-biao, et al. Study on pavement performance evaluation method based on BP neural network[J]. Highway, 2008(12): 140-144.
8 刘艳, 康海贵, 孙敏. 基于遗传算法的模糊优选神经网络路面性能评价模型[J]. 大连理工大学学报, 2010, 50(1):117-122.
Liu Yan, Kang Hai-gui, Sun Min. Genetic algorithm-based fuzzy optimization neural network model for pavement performance evaluation[J]. Journal of Dalian University of Technology, 2010, 50(1):117-122.
9 周园园,亓建荣,周俊昌,等. 离散Hopfield 神经网络在沥青路面使用性能评价中的应用[J]. 重庆交通大学学报:自然科学版, 2012, 31(5):970-973.
Zhou Yuan-yuan, Qi Jian-rong, Zhou Jun-chang, et al. Pavement performance evaluation by discrete Hopfield neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5):970-973.
10 王小凤,高攀科,王进玺. 基于混合遗传神经网络的高速公路沥青路面使用性能评价方法研究[J]. 公路工程, 2017, 42(4): 219-222.
Wang Xiao-feng, Gao Pan-ke, Wang Jin-xi. Study on evaluation method of expressway asphalt pavement performance based on hybrid genetic neural network[J]. Highway Engineering, 2017, 42(4): 219-222.
11 Yan K Z, Zhang Z. Research in analysis of asphalt pavement performance evaluation based on PSO-SVM[J]. Applied Mechanics and Materials, 2011,97/98: 203-207.
12 Ahmad A S, Hassan M Y, Abdullah M P, et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting[J]. Renewable and Sustainable Energy Reviews, 2014, 33:102-109.
13 Subasi A, Gursoy M. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Systems with Applications, 2010, 37(12): 8659-8666.
14 Li Z, Zhang J P, Liu T, et al. Using PSO-SVR algorithm to predict asphalt pavement performance[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 1-12.
15 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
Liu Dan, Liu Fang, Xu Yan-ping. Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 94-98.
16 管仁初, 贺宝润, 梁艳春, 等.基于亲缘关系选择的粒子群优化算法[J]. 吉林大学学报:工学版, 2022, 52(8): 1842-1849.
Guan Ren-chu, He Bao-run, Liang Yan-chun, et al. Particle swarm optimization algorithm based on kinship selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1842-1849.
17 Sujay R N, Paresh C D. Support vector machine applications in the field of hydrology: a review[J]. Applied Soft Computing, 2014, 19: 372-386.
[1] En-shen LONG,Guang-ze BAN. Idle noise diagnosis algorithm of air-conditioning refrigeration compressor based on wavelet packet extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1929-1934.
[2] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[3] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[4] Ye TIAN,Nan-nan LI,Jun-wei LIU,Sheng-yuan JIANG,Chu WANG,Wei-wei ZHANG. Identification of critical fragments cutting load of simulated lunar soil based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2143-2151.
[5] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[6] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
[7] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[8] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[9] Yang LIU,Ji-cheng LIU. Collaborative optimization scheduling method of clean energy based on big data and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1443-1448.
[10] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[11] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[12] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[13] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[14] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[15] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!