Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1688-1700.doi: 10.13229/j.cnki.jdxbgxb.20221079

Previous Articles    

Proposed formulae for transverse distribution factor of internal forces of prefabricated small box-girder bridge

Yan-ling ZHANG1,2(), JIAYun-fei1,2,Xiao-yuan JIA1,2,Wang ZHENG1,2,Yun-sheng LI1,2()   

  1. 1.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2022-08-24 Online:2024-06-01 Published:2024-07-23
  • Contact: Yun-sheng LI E-mail:06mzhang@163.com;liysh70@163.com

Abstract:

In order to simplify the stress analysis process by using the concept of transverse distribution factor (TDF) for the multi-girder fabricated continuous girder bridges, skew bridges and curved bridges, the bridge database based on a multi girder fabricated continuous small box girder bridge was established, and the finite element model of each bridge was built by using the grillage method. The influence of the girder spacing, height span ratio, skew angle and center angle on the transverse distribution coefficient of internal force was investigated, and the formulae of the transverse distribution factor of internal forces were proposed by statistical regression method. The results show that the transverse distribution factors of bending moment and shear force increase with the development of the girder spacing; With the increase of the height span ratio of the main beam λ, the transverse distribution factors for mid-span positive bending moment increases, but decrease for that of the mid-span shear force and the negative bending moment and shear force at the support; The transverse distribution factor of internal force in skew bridges and curved bridges can be obtained by multiplying the modification factor with the formula of straight orthogonal bridges. Within the scope of the calculation model in this paper, the transverse distribution factors of internal forces of multi-girder fabricated continuous girder bridges, skew bridges and curved bridges obtained by the proposed formulae are in good agreement with the finite element results, and the transverse distribution factors of internal forces of any section can be obtained by the simplified envelope diagram along the longitudinal direction.

Key words: bridge construction, prefabricated bridge, transverse distribution factor, continuous small box-girder bridge, skewed bridge, curved bridge

CLC Number: 

  • U448.25

Fig.1

Cross section of bridge /cm"

Fig.2

Bearing arrangement and working conditions"

Fig.3

Comparison between the results of grillage model and the results of literature [10]"

Fig.4

Influence line of TDF for internal forces"

Fig.5

Fitting curve of TDF for internal forces in edge beam with λ"

Fig.6

Fitting curve of TDF for internal forces in middle beam with λ"

Table 1

Fitting formulae of TDF for internal forces with λ"

内力类型位置工况(i拟合公式形式相关系数R2
Ml/2边梁1mλ =0.652 8e-0.000 2/(λ-0.038 3)0.985 0
中梁2mλ =0.640 9e-0.000 7/(λ-0.027 3)0.986 9
M0边梁3mλ =0.644 8e0.000 7/(λ+0.004 5)0.988 7
中梁4mλ =0.622 6e0.003 0/(λ+0.068 8)0.989 0
Q0边梁5mλ =0.740 5e0.020 7/(λ-0.014 7)0.986 8
中梁6mλ =0.746 0e0.025 1/(λ+0.000 1)0.983 8
Ql/2边梁7mλ =0.639 1e0.002 1/(λ+0.129 8)0.991 2
中梁8mλ =0.606 6e0.000 9/(λ+0.006 4)0.989 7

Fig.7

Fitting curve of TDF for internal forces in edge beam with change of D"

Fig.8

Fitting curve of TDF for internal forces in middle beam with D"

Table 2

Fitting formulae of TDF for internal forces with D"

内力类型位置工况(i拟合公式相关系数R2
Ml/2边梁1mD =0.268 7D1.106 00.999 8
中梁2mD =0.308 7D0.959 00.999 3
M0边梁3mD =0.263 1D1.136 50.999 6
中梁4mD =0.309 5D0.924 00.998 2
Q0边梁5mD =0.682 6D0.752 80.994 6
中梁6mD =0.742 1D0.592 10.999 9
Ql/2边梁7mD =0.255 1D1.159 10.999 0
中梁8mD =0.350 0D0.906 70.999 6

Table 3

Fitting coefficients of bD, bλ and cλ"

内力

类型

位置

工况

i

主梁间距D主梁高跨比λ=H/L
bDR2bλcλR2
Ml/2边梁11.106 00.999 8-0.000 2-0.038 30.985 0
中梁20.959 00.999 3-0.000 7-0.027 30.986 9
M0边梁31.136 50.999 60.000 70.004 50.986 7
中梁40.924 00.998 20.003 00.068 80.989 0
Q0边梁50.752 80.994 60.020 7-0.014 70.986 8
中梁60.592 10.999 90.025 10.000 60.983 8
Ql/2边梁71.159 10.999 00.002 10.129 80.991 2
中梁80.906 70.999 60.000 90.006 40.989 7

Table 4

Fitting formulae of TDF for internal forces for straight orthogonal bridges"

内力类型位置工况(i拟合公式形式ki
Ml/2边梁1m1=k1D1.106 0e-0.000 2/(λ-0.038 3)0.271 9
中梁2m2=k2D0.959 0e-0.000 7/(λ-0.027 3)0.313 8
M0边梁3m3=k3D1.136 5e0.000 7/(λ+0.004 5)0.260 6
中梁4m4=k4D0.924 0e0.003 0/(λ+0.068 8)0.321 9
Q0边梁5m5=k5D0.752 8e0.020 7/(λ-0.014 7)0.425 1
中梁6m6=k6D0.592 1e0.025 1/(λ+0.000 6)0.543 0
Ql/2边梁7m7=k7D1.1591e0.002 1/(λ+0.129 8)0.259 0
中梁8m8=k8D0.906 7e0.000 9/(λ+0.006 4)0.329 5

Table 5

Verification models"

编号跨度/m主梁宽度/m主梁片数主梁高度/m高跨比
14×101.87580.90.090
24×121.87580.90.075
34×201.87581.00.050
44×202.22051.80.090
54×242.22051.20.050
64×162.50061.60.100
74×202.50061.50.075
84×282.50061.60.057
94×103.00050.90.090
104×143.00050.90.064
114×223.00051.10.050
124×205.00031.80.090
134×205.00031.70.085
144×245.00031.80.075
154×285.00031.80.064
164×325.00031.80.056

Fig.9

Comparison between the results of the formulae in this paper and FE for the TDF in edge beams"

Fig.10

Comparison between the results of the formulae in this paper and FE for the TDF in middle beams"

Fig.11

Variation of TDF with skew angle"

Fig.12

Fitting curve of ks for edge beam"

Fig.13

Fitting curve of ks for middle beam"

Table 6

Skew correction factor ks"

内力类型位置工况(i拟合公式形式
Ml/2边梁11.019 6-0.019 2(cos θ10.83
中梁21.180 8-0.099 7(cos θ0.96
M0边梁31.015 8+0.034 5(cos θ3.94
中梁41.000 7+0.210 2(cos θ1.96
Q0边梁50.880 9+0.479 9(cos θ0.55
中梁61.191 3+0.039 4(cos θ2.15
Ql/2边梁70.902 6+0.023 0(cos θ0.62
中梁81.002 6+0.056 4(cos θ2.67

Fig.14

Layout of the small box girder"

Fig.15

Error diagram of TDF for internal forces in side beam of skew bridge"

Fig.16

Error diagram of TDF for internal forces in middle beam of skew bridge"

Fig.17

Variation of TDF with central angle"

Fig.18

Fitting curve of kc for edge beam"

Fig.19

Fitting curve of kc for middle beam"

Table 7

Curve correction factor kc"

内力类型位置工况(i拟合公式形式
Ml/2边梁11.004 2-0.010 3(cos φ1.64
中梁21.004 6-0.062 7(cos φ1.54
M0边梁30.994 5+0.002 6(cos φ1.15
中梁40.920 7+0.003 2(cos φ1.11
Q0边梁51.057 2-0.395 8(sin φ0.64
中梁60.900 8-0.201 9(sin φ0.78
Ql/2边梁70.979 0-0.001 7(sin φ1.84
中梁80.894 0-0.001 0(sin φ4.67

Fig.20

Error diagram of TDF for internal forces in side beam of curved bridge"

Fig.21

Error diagram of TDF for internal forces in middle beam of curved bridge"

Fig.22

Envelope diagram of TDF for bending moment"

Fig.23

Envelope diagram of TDF for shear force"

1 American Association of State Highway & Transportation Officials. AASHTO LRFD bridge design specifications[EB/OL].[2022-08-15].
2 Bernardi P, Cerioni R, Leurini F, et al. A design method for the prediction of load distribution in hollow-core floors[J]. Engineering Structures, 2016, 123: 473-481.
3 Zhao Y, Cao X Z, Zhou Y J, et al. Lateral load distribution for hollow slab bridge: field test investigation [J]. International Journal of Concrete Structures and Materials, 2020, 14:No. 22.
4 战家旺, 高胜星, 闫宇智,等. 基于模型修正的公路简支板梁桥荷载横向分布系数计算方法[J]. 中国公路学报, 2019, 32(5): 72-79.
Zhan Jia-wang, Gao Sheng-xing, Yan Yu-zhi, et al.A calculation method for transverse load distribution coefficient of highway simply-supported slab-girder bridges based on model updating[J]. China J Highw Transp, 2019,32(5): 72-79.
5 王渠, 吴庆雄, 陈康明, 等. 拼宽空心板桥荷载横向分布计算方法[J]. 中国公路学报, 2019, 32(7): 57-65.
Wang Qu, Wu Qing-xiong, Chen Kang-ming, et al. Calculation method of load transverse-distribution for widening hollow slab bridge[J]. China J Highw Transp, 2019,32(7): 57-65.
6 Tevfik T, Mary B D H, John B M. Live load distribution factors for spread slab beam bridges[J]. J Bridge Eng, 2017, 22(10): No. 04017067.
7 邬晓光, 魏俊杰. 宽幅装配式箱梁桥荷载横向分布系数计算[J]. 沈阳建筑大学学报:自然科学版, 2020, 36(1): 76-85.
Wu Xiao-guang, Wei Jun-jie. Calculation of load transverse distribution coefficient of wide assembled box girder bridge[J]. Journal of Shenyang Jianzhu University (Natural Science), 2020,36(1): 76-85.
8 何伟南, 周怀治, 王银辉. 多室宽箱梁桥横向分布计算的刚接梁法[J]. 公路交通科技:应用技术版, 2016, 12(1): 212-216.
He Wei-nan, Zhou Huai-zhi, Wang Yin-hui. Rigid-jointed girder method for transverse distribution calculating of wide multi-cell box girder bridges[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2016,12(1): 212-216.
9 闫林君, 张经伟, 罗奎. 装配式多主梁钢-混组合梁桥的荷载横向分布研究[J]. 公路交通科技, 2020, 37(3): 59-69.
Yan Lin-jun, Zhang Jing-wei, Luo Kui. Study on lateral load distribution of prefabricated multi-girder steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2020, 37(3): 59-69.
10 Kong S Y, Zhuang L D, Tao M X, et al. Load distribution factor for moment of composite bridges with multi-box girders[J]. Engineering Structures, 2020, 215(10): No. 110716.
11 Ma L, Zhou L Y, Wan S. Study of the calculation method of lateral load distribution on a continuous composite box girder bridge with corrugated steel webs[J]. Journal of Highway and Transportation Research and Development, 2014, 8(2): 42-46.
12 聂鑫, 樊健生, 付裕. 箱形截面连续组合梁桥的荷载横向分布[J]. 清华大学学报:自然科学版, 2009, 49(12): 1930-1933, 1938.
Nie Xin, Fan Jian-sheng, Fu Yu. Transverse load distribution on box section continuous composite steel-concrete bridges[J]. Journal of Tsinghua University (Sci&Tech), 2009,49(12): 1930-1933, 1938.
13 余泉. 多箱式连续小箱梁桥受力特性的分析及其试验研究[D]. 杭州: 浙江大学建筑工程学院, 2006.
Yu Quan. Analysis of structure behavior of continuous multi-box girder bridges and its experimental study[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2006.
14 Huang H X, Shenton H W. Chajes M J. Load distribution for a highly skewed bridge: testing and analysis[J]. J Bridge Eng, 2004, 9(6): 558-562.
15 Fatemi S J, Mohamed Ali M S, Sheikh A H. Load distribution for composite steel-concrete horizontally curved box girder bridge[J]. Journal of Constructional Steel Research, 2016, 116: 19-28.
16 魏志刚, 刘寒冰, 时成林, 等. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报:工学版, 2018, 48(1): 105-112.
Wei Zhi-gang, Liu Han-bing, Shi Cheng-lin, et al. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 105-112.
17 张学龙. 小箱梁的梁格划分及虚拟横梁刚度分析研究[D]. 西安: 长安大学公路学院, 2013.
Zhang Xue-long. Study and analysis on beam meshing and the virtual beam stiffness of Small box girder [D]. Xi'an: School of Highway, Chang'an University, 2013.
18 管路, 贾鹏, 向天华,等. 组合小箱梁横向分布系数影响因素分析研究[J]. 福建建材, 2020(6): 10-13.
Guan Lu, Jia Peng, Xiang Tian-hua, et al. Analysis of the influencing factors on the transverse distribution factor of the composite small box girder[J]. Fujian Building Materials, 2020(6): 10-13.
[1] Yan-ling ZHANG,Can WANG,Xu ZHANG,Ang-yang WANG,Yun-sheng LI. Human⁃induced vibration analysis and pedestrian comfort evaluation for suspension footbridge with different hunger systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2644-2652.
[2] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[3] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!