Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 2009-2014.doi: 10.13229/j.cnki.jdxbgxb.20230035

Previous Articles    

Short-term energy consumption prediction model of public buildings based on short-term memory network

Guo-qing ZHU1(),Xian-cheng LIU1,Cong-xiang TIAN2()   

  1. 1.School of Urban Construction,Yangtze University,Jingzhou 434023,China
    2.Yangtze University College of Arts and Sciences,Jingzhou 434020,China
  • Received:2023-01-11 Online:2024-07-01 Published:2024-08-05
  • Contact: Cong-xiang TIAN E-mail:zhuguoqing0120@163.com;703216@yangtzeu.edu.cn

Abstract:

In order to improve the accuracy, generalization and robustness of short-term energy consumption prediction for public buildings, a short-term energy consumption prediction model for public buildings based on short-term memory network was proposed. The long-term and short-term memory network is used as the energy consumption feature extractor of public buildings to retain valuable historical energy consumption data in the process of continuous iteration, adjust the output of different time sequences through autonomous learning and self-organization, and introduce the gray system to reduce the number of sample data required and reduce errors. The output weight value is calculated by the minimum multiplication method to obtain the prediction value under the long-term and short-term memory network. The short-term prediction value of building energy consumption is obtained by accumulating the results after the inverse normalization function processing. The experimental results show that the proposed method has excellent energy consumption prediction ability and can be effectively used for public building energy consumption prediction.

Key words: short-term memory network, grey system, energy consumption of public buildings, forecast model, inverse normalization function, memory unit

CLC Number: 

  • TP267

Table 1

Relationship between indicators and buildingpower consumption"

影响变量指标与建筑耗电量之间的关系
建筑面积该指标与建筑总耗电量为线性关系,同比例增加
人均可支配收入该指标与建筑总耗电量高度相关
月份周期变量该指标可以显示建筑耗电量的周期长短情况
月份序列变量该指标可以显示建筑耗电量的增长情况
夏季度平均小时该指标明显偏向于建筑耗电量中的空调制冷耗电量
冬季度平均小时该指标明显偏向于建筑耗电量中的供暖供热耗电量

Fig.1

Long and short term memory type network unit structure"

Fig.2

Flow chart of grey long and short term memory type network energy consumption prediction"

Fig.3

Prediction accuracy comparison of three models"

Fig.4

Comparison of absolute error of building prediction models by three methods"

Fig.5

Proof of generalization capability"

1 刘晓君,胡升凯,李玲燕. 中国省区建筑能耗时空分布与影响因素分析[J]. 数学的实践与认识, 2020,50(6):74-85.
Liu Xiao-jun, Hu Sheng-kai, Li Ling-yan. Temporal and spatial changes of building energy consumption in China´s provinces and analysis of its influencing factors[J]. Mathematics in Practice and Theory, 2020, 50(6): 74-85.
2 季天瑶,王挺韶. 基于词嵌入与卷积神经网络的建筑能耗预测[J]. 华南理工大学学报:自然科学版, 2021, 49(6):40-48.
Ji Tian-yao, Wang Ting-shao. Building energy consumption prediction based on word embedding and convolutional neural network[J]. Journal of South China University of Technology(Natural Science Edition), 2021,49(6): 40-48.
3 肖冉,魏子清,翟晓强.基于支持向量机的办公建筑逐时能耗预测[J].上海交通大学学报,2021,55(3):331-336.
Xiao Ran, Wei Zi-qing, Zhai Xiao-qiang. Hourly energy consumption forecasting for office buildings based on support vector machin[J]. Journal of Shanghai Jiaotong University, 2021,55(3): 331-336.
4 王洪亮,穆龙新,时付更,等.基于循环神经网络的油田特高含水期产量预测方法[J].石油勘探与开发,2020,47(5):1009-1015.
Wang Hong-liang, Mu Long-xin, Shi Fu-geng, et al. Production prediction at ultra-high water cut stage via recurrent neural network[J]. Petroleum Exploration and Development, 2020, 47(5): 1009-1015.
5 Nguyen T, Le H N, Ngo V H, et al. CRITIC method and grey system theory in the study of Global electric cars[J]. World Electric Vehicle Journal, 2020, 11(4):1-15.
6 Yang F, Du L, Yu H, et al. Magnetic and electric energy harvesting technologies in power grids: a review[J]. Sensors, 2020, 20(5):No.1496.
7 许浩源,李媛媛.GA-BP神经网络对SAW压力传感器测量数据的拟合[J].电子测量与仪器学报,2021,35(4):7-14.
Xu Hao-yuan, Li Yuan-yuan. Fitting analysis of SAW micro pressure sensor measurement data by ga optimized BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(4): 7-14.
8 Benjamin K, Luo Z, Wang X. Crowdsourcing urban air temperature data for estimating urban heat island and building heating/cooling load in london[J]. Energies, 2021, 14(16):No.5208.
9 Sun F, Li C. A comprehensive evaluation method and application of shield tunnel structure health based on variable weight theory[J]. International Journal of Structural Integrity, 2022(3):394-410.
10 Fujiwara T, Hoshide S, Kanegae H, et al. Clinical impact of the maximum mean value of home blood pressure on cardiovascular outcomes: a novel indicator of home blood pressure variability[J]. Hypertension, 2021, 78(3): 840-850.
11 吕大千.基于精密单点定位的GNSS时间同步方法研究[J].测绘学报,2022,51(2):315.
Da-qian Lyu. Research on GNSS time synchronization method based on precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2022,51(2): 315.
12 Zheng M, Li T, Zhu R, et al. Conditional wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification[J].Information Sciences,2020,512:1009-1023.
13 张林,赖向平,仲书勇,等.基于正交小波和长短期记忆神经网络的用电负荷预测方法[J].现代电力,2022,39(1):72-79.
Zhang Lin, Lai Xiang-ping, Zhong Shu-yong, et al. Electricity load forecasting method based on orthogonal wavelet and long short-term memory neural networks[J]. Modern Electric Power, 2022, 39(1): 72-79.
14 侯耀斌,冯巍巍,蔡宗岐,等.基于神经网络模型的海水硝酸盐测量方法研究[J].光谱学与光谱分析,2020,40(10):3211-3216.
Hou Yao-bin, Feng Wei-wei, Cai Zong-qi, et al. Nitrate measurement in the ocean based on neural network model[J]. Spectroscopy and Spectral Analysis, 2020,40(10): 3211-3216.
15 孟先艳,崔荣一,赵亚慧,等.基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法[J].计算机应用研究,2020,37(9):2669-2673.
Meng Xian-yan, Cui Rong-yi, Zhao Ya-hui, et al. Multilingual text classification method based on bi-directional long short-term memory and convolutional neural network[J]. Application Research of Computers, 2020,37(9): 2669-2673.
16 Albalawi F, Alshehri S, Chahid A, et al. Voxel weight matrix-based feature extraction for biomedical applications[J]. IEEE Access, 2020(8):121451-121459.
17 Shivappriya S N, Priyadarsini M, Stateczny A, et al. Cascade object detection and remote sensing object detection method based on trainable activation function[J]. Remote Sensing, 2021, 13(2):No.13020200.
18 陈诗雨,李小勇,杜杨杨,等.Fourier神经网络非线性拟合性能优化研究[J].武汉大学学报:工学版,2020,53(3):277-282.
Chen Shi-yu, Li Xiao-yong, Du Yang-yang, et al. Optimization study of Fourier neural network nonlinear fitting performance[J]. Journal of Wuhan University (Engineering Edition), 2020,53(3): 277-282.
19 Zhang J, Sun L, Zhong Y, et al. Kinetic model and parameters optimization for Tangkou bituminous coal by the bi-Gaussian function and Shuffled complex evolution[J]. Energy, 2022,243(3):No.123012.
20 Liu Y, Ma S, Du X. An improved k-means algorithm based on a new cluster center selection method[J]. IEEE Access, 2020(99):No.3044069.
[1] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[2] Xue-zhi WANG,Qing-liang LI,Wen-hui LI. Spatio⁃temporal model of soil moisture prediction integrated with transfer learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 675-683.
[3] GAO Zhen-hai,WU Tao,ZHAO Hui. Model of driver's braking moment in virtual car following collision avoidance scenes [J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
[4] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster [J]. 吉林大学学报(工学版), 2013, 43(03): 654-658.
[5] TAN Guo-jin, WANG Long-lin, CHENG Yong-chun. Prediction method for cable tension state of cable-stayed bridges based on grey system theory in cold areas [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[6] Li Jian-po,Zhao Ji-yin,Zheng Rui-rui,Guan Hai-jun . A grey target theory based method for state assessment of power transformer [J]. 吉林大学学报(工学版), 2008, 38(01): 201-205.
[7] ZANG Xue-bai, ZHAI Jing-yang, SANG Lan-fen, AN Xiao-feng. Computer simulation of laminated material vibration drilling [J]. 吉林大学学报(工学版), 2003, (2): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!