Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 675-683.doi: 10.13229/j.cnki.jdxbgxb20210608
Xue-zhi WANG1(),Qing-liang LI2,Wen-hui LI1()
CLC Number:
1 | Yu Feng, Cui Ning-bo, Hao Wei-ping, et al. Estimation of soil temperature from meteorological data using different machine learning models[J]. Geoderma, 2019, 338: 67-77. |
2 | Sanikhania H, Deo R C, Yaseen Z M, et al. Non-tuned data intelligent model for soil temperature estimation: a new approach[J]. Geoderma, 2018, 330: 52-64. |
3 | Yang J M, Busen H, Scherb H, et al. Modeling of radon exhalation from soil influenced by environmental parameters[J]. Science of the Total Environment, 2019, 656: 1304-1311. |
4 | Bhadani P, Vashisht V. Soil moisture, temperature and humidity measurement using arduino[C]∥2019 9th International Conference on Cloud Computing, Data Science & Engineering, Amity Univ, Noida, India, 2019: 567-571. |
5 | Hu Guo-jie, Zhao Lin, Wu Xiao-dong, et al. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet plateau of China[J]. Journal of Arid Land, 2016, 8(2): 232-240. |
6 | Liang L L, Riveros-Iregui D A, Emanuel R E, et al. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(2): 407-417. |
7 | Entekhabi D, Njoku E G, O"Neill P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716. |
8 | Fang Kuai, Shen Chao-peng, Kifer D, et al. Prolongation of SMAP to spatio-temporally seamless coverage of continental U.S. using a deep learning neural network[J]. Geophysical Research Letters, 2017, 44(21): 11030-11039. |
9 | Fang Kuai, Shen Chao-peng. Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel[J]. Journal of Hydrometeorology, 2020, 21(3): 399-413. |
10 | Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
11 | Cobaner M, Citakoglu H, Kisi O, et al. Estimation of mean monthly air temperatures in Turkey[J]. Computers and Electronics in Agriculture, 2014, 109: 71-79. |
12 | Kisi O, Sanikhani H. Modelling long-term monthly temperatures by several data-driven methods using geographical inputs[J]. International Journal of Climatology, 2015, 35(13): 3834-3846. |
13 | Kisi O, Kim S, Shiri J. Estimation of dew point temperature using neuro-fuzzy and neural network techniques[J]. Theoretical & Applied Climatology, 2013, 114(3/4): 365-373. |
14 | Kisi O, Sanikhani H. Prediction of long-term monthly precipitation using several soft computing methods without climatic data[J]. International Journal of Climatology, 2015, 35(14): 4139-4150. |
15 | Mohammadi K, Shamshirband S, Kamsin A, et al. Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 423-434. |
16 | Sobayo R, Wu H H, Ray R L, et al. Integration of convolutional neural network and thermal images into soil moisture estimation[C]∥1st International Conference on Data Intelligence and Security, South Padre Island, USA, 2018: 207-210. |
17 | Pan B X, Hsu K H, Aghakouchak A, et al. Improving precipitation estimation using convolutional neural network[J]. Water Resources Research, 2019, 55(3): 2301-2321. |
18 | Li Qing-liang, Zhao Yang, Yu Fan-hua. A novel multichannel long short-term memory method with time series for soil temperature modeling[J]. IEEE Access, 2020, 8: 182026-182043. |
19 | Hu Qing-hua, Zhang Ru-jia, Zhou Yu-can. Transfer learning for short-term wind speed prediction with deep neural networks[J]. Renewable Energy, 2016, 85: 83-95. |
20 | Chen Yu-wen, Huang Xiao-meng, Yi Li, et al. Improving machine learning-based weather forecast post-processing with clustering and transfer learning[J/OL]. [2021-06-19]. |
21 | Rasp S, Dueben P D, Scher S, et al. WeatherBench: a benchmark dataset for data-driven weather forecasting[J/OL]. [2021-06-21]. |
22 | Cao B, Gruber S, Zheng D H, et al. The ERA5-land soil temperature bias in permafrost regions[J]. Cryosphere, 2020, 14(8): 2581-2595. |
23 | Wang Yun-bo, Long Ming-sheng, Wang Jian-min, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]∥31st Annual Conference on Neural Information Processing Systems, Long Bench, CA, 2017:879-888. |
[1] | Lin MAO,Feng-zhi REN,Da-wei YANG,Ru-bo ZHANG. Two⁃way feature pyramid network for panoptic segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 657-665. |
[2] | Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563. |
[3] | Xue WANG,Zhan-shan LI,Ying-da LYU. Medical image segmentation based on multi⁃scale context⁃aware and semantic adaptor [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 640-647. |
[4] | Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656. |
[5] | Xiang-jun LI,Jie-ying TU,Zhi-bin ZHAO. Validity classification of melting curve based on multi⁃scale fusion convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 633-639. |
[6] | Su-ming KANG,Ye-e ZHANG. Hadoop⁃based local timing link prediction algorithm across social networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 626-632. |
[7] | Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376. |
[8] | Wen-zhi GAO,Yan-jun WANG,Xin-wei WANG,Pan ZHANG,Yong LI,Yang DONG. Real⁃time diagnosis for misfire fault of diesel engine based on convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 417-424. |
[9] | You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173. |
[10] | Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62. |
[11] | Hong-wei ZHAO,Dong-sheng HUO,Jie WANG,Xiao-ning LI. Image classification of insect pests based on saliency detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2174-2181. |
[12] | Zhou-zhou LIU,Qian-yun ZHANG,Xin-hua MA,Han PENG. Compressed sensing signal reconstruction based on optimized discrete differential evolution algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2246-2252. |
[13] | Yan-lei XU,Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312. |
[14] | Sheng-sheng WANG,Jing-yu CHEN,Yi-nan LU. COVID⁃19 chest CT image segmentation based on federated learning and blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173. |
[15] | Dong-ming SUN,Liang HU,Yong-heng XING,Feng WANG. Text fusion based internet of things service recommendation for trigger⁃action programming pattern [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2182-2189. |
|