Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 245-255.doi: 10.13229/j.cnki.jdxbgxb.20230253

Previous Articles    

Strength and statistical damage model in whole process of clay-concrete combined body

Huai-xin LI1(),Chang-gen YAN1(),Bin LIN2,Yu-ling SHI3   

  1. 1.School of Highway,Chang 'an University,Xi'an 710064,China
    2.School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,China
    3.School of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,China
  • Received:2023-02-23 Online:2025-01-01 Published:2025-03-28
  • Contact: Chang-gen YAN E-mail:lihuaixin520@163.com;yanchanggen@163.com

Abstract:

In order to study the influence of small dip angle(0°<θ<30°) contact surface on the strength characteristics of pile-soil composite structure under different influencing factors, the unconsolidated undrained triaxial test on clay-concrete assembled specimens of variable inclination was carried out by TSZ-2 fully automatic triaxial instrument, and the shear strength and failure mechanism of the clay-concrete combined body under different confining pressures and moisture content were discussed. Finally, according to the shear characteristics of the small inclination clay-concrete combined body, the statistical damage model of the small-angle clay-concrete composite was deduced in the whole process. The results show that when the interface inclination of the clay-concrete combined body is 0°<θ<30° and the water content of the soil is 17%, increasing the interface inclination angle of the clay-concrete combined body can improve the shear strength, and as the water content gradually increases, the larger the interface inclination angle of the clay-concrete combined body, the smaller the shear strength of the clay-concrete combined body. The deformations during triaxial loading of the small-angle combined body can be divided into contact surface slip phase, specimen elastic compression and contact surface shear coupling phase, soil sample elastoplastic shear phase. The larger the inclination of the clay-concrete combined body, the bigger the initial damage value under the same conditions, besides, its total damage value increases with the increase of axial strain, and the initial damage value is also affected by the surrounding pressure and water content. Finally, the experimental data and theoretical values of the model are compared, and the overall fit is consistent, which verifies the accuracy and reasonableness of the model.

Key words: traffic engineering, clay-concrete combined body of variable inclination, triaxial shear test, shear mechanism, deformation properties, statistical damage theory

CLC Number: 

  • TU443

Table 1

Main physical indicators of the soil mass"

深度

/m

液限

/%

塑限

/%

最优含

水率/%

最优干密度

/(g?cm-3

塑性指数/%
2~541.020.921.861.9820.1

Fig.1

Test loaded specimen"

Table 2

Test design scheme"

倾角θ/(°)tanθi含水率w/%围压σ3/kPa
θ0017100、200、300
22100、200、300
27100、200、300
θ10.2517100、200、300
22100、200、300
27100、200、300
θ20.517100、200、300
22100、200、300
27100、200、300

Fig.2

Characteristic analysis of strength curve"

Fig.3

Stress-strain curves for different influencing factors"

Fig.4

Axial stress increments due to different moisture contents"

Table 3

Mechanical parameters of variable inclination assemblies under different influencing factors"

接触面

倾角

围压σ3/

kPa

w=17%w=22%w=27%
(σ1-σ3)'/kPa弹性模量E/kPa(σ1-σ3)'/kPa弹性模量E/kPa(σ1-σ3)'/kPa弹性模量E/kPa
θ0100351.794.71240.287.07140.763.49
200420.3112.36311.7107.60157.973.00
300480.8129.82355.0119.78168.781.16
θ1100379.879.96246.877.83102.535.16
200509.2114.41342.2110.81107.451.28
300636.8145.11445.6138.66119.955.33
θ2100381.597.46239.777.26109.221.41
200491.2109.51298.486.94135.229.89
300600.6152.13361.6110.34186.042.39

Fig.5

Analysis of failure mechanism of soil sample of variable dip angle composite"

Fig.6

Schematic diagram of the deformation process of small-dip composite"

Table 4

Relevant fitting parameter values"

围压σ3/

kPa

倾角θ0/(°)倾角θ1/(°)倾角θ2 / (°)
参数C参数D相关系数R2参数C参数D相关系数R2参数C参数D相关系数R2
1001.168 4-2.843 50.982 41.515 8-4.095 90.930 71.056 6-2.723 70.961 1
2001.152 1-2.889 30.987 21.186 9-3.307 40.944 11.772 6-4.487 40.985 6
3001.125 0-2.886 20.980 21.283 3-3.473 50.979 41.272-3.231 10.991 3

Fig.7

Influence of fitting parameters on the damage model curve"

Fig.8

Influence of different parameters on total damage factor"

Fig.9

Comparison between theoretical curve and experimental data"

1 Potyondy J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
2 石熊, 张家生, 刘蓓, 等. 红黏土与混凝土接触面剪切特性试验研究[J]. 中南大学学报:自然科学版, 2015,46(5): 1826-1831.
Shi Xiong, Zhang Jia-sheng, Liu Bei, et al. Experiential research on shearing properties of interface between red clay and concrete[J]. Journal of Central South University(Science and Technology), 2015, 46(5): 1826-1831.
3 高登辉, 邢义川, 郭敏霞, 等.非饱和重塑黄土-混凝土接触面修正双曲线模型[J]. 吉林大学学报:工学版, 2020, 50(1): 156-164.
Gao Deng-hui, Xing Yi-chuan, Guo Min-xia, et al. Modified hyperbola model of interface between unsaturated remolded loess and concrete[J]. Journal of Jilin University(Engineering and Technology Edition),2020, 50(1):156-164.
4 徐方, 陈乐, 赵春彦, 等. 黏土-水泥土接触面剪切特性试验研究[J]. 工程科学与技术, 2021, 53(2): 110-117.
Xu Fang, Chen Le, Zhao Chun-yan, et al. Experimental study on the interface shear behavior of clay and cement soil[J]. Advanced Engineering Sciences, 2021, 53(2): 110-117.
5 成 浩, 曾国东,周敏,等.考虑粗糙度影响的黏土–混凝土接触面峰值剪切强度模型研究[J]. 工程科学与技术, 2021, 53(4): 168-177.
Cheng Hao, Zeng Guo-dong, Zhou Min, et al. Peak shear strength model for clay-concrete interface considering Roughness[J]. Advanced Engineering Sciences, 2021, 53(4): 168-177.
6 Boulon M, Nova R. Modeling of soil structure interface behavior: a comparison between elastoplastic and rate-type laws[J]. Computers and Geotechnics, 1990, 17(9): 21-46.
7 殷宗泽, 朱 泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 10(3): 14-22.
Yin Zong-ze, Zhu Hong, Xu Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 10(3): 14-22.
8 栾茂田, 武亚军. 土与结构间接触面的非线性弹性-理想塑性模型及其应用[J]. 岩土力学, 2004, 25(4): 507-513.
Luan Mao-tian, Wu Ya-jun. A nonlinear elasto-perfectly plastic model of interface element for soil-structure interaction and its applications[J]. Rock and Soil Mechanics, 2004, 25(4): 507-513.
9 Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1):19-43.
10 杨林德, 刘齐建. 土-结构物接触面统计损伤本构模型[J]. 地下空间与工程学报, 2006, 2(1): 79-83.
Yang Lin-de, Liu Qi-jian.Research on statistical damage model for soil structure interface[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(1): 79-83.
11 李赛, 汪优, 秦志浩, 等.基于统计损伤本构模型的改进接触面模型研究[J]. 铁道科学与工程学报, 2016, 13(7):1247-1252.
Li Sai, Wang You, Qin Zhi-hao, et al.Research on improved contact surface constitutive model based on statistical damage constitutive model [J]. Journal of Railway Science and Engineering,2016, 13(7): 1247-1252.
12 汪优, 任加琳, 李赛, 等. 土-结构接触面剪切全过程本构关系研究[J]. 湖南大学学报:自然科学版, 2021, 48(3): 144-152.
Wang You, Ren Jia-lin, Li Sai, et al. Study on shear constitutive relation of soil–structure interface in whole process[J]. Journal of Hunan University (Natural Sciences), 2021, 48(3):144-152.
13 徐卫亚, 韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报, 2002, 21(6): 787-791.
Xu Wei-ya, Wei Li-de. Study on statistical damage constitutive model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 787-791.
14 Li C D, Liu X W, Liu Q T, et al. Influence of isosceles trapezoid cross-section on the reinforcement effect of stabilizing piles[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2670-2676.
15 文兴, 裴向军, 刘云鹏. 特殊截面抗滑桩受力特征与土拱效应分析[J]. 工程地质学报,2013,21(5): 797-803.
Wen Xing, Pei Xiang-jun, Liu Yun-peng. Stress characteristics and soil arch effect analysis of anti-sliding piles with special cross-section[J]. Journal of Engineering Geology, 2013, 21(5): 797-803.
16 何爽, 胡向东. 管幕冻结法钢管-冻土接触面剪切试验研究[J]. 隧道建设:中英文, 2019, 39(11): 1864-1870.
He Shuang, Hu Xiang-dong. Shear test of steel pipe frozen soil interface in freeze-sealing pipe roof method[J]. Tunnel Construction, 2019, 39(11): 1864-1870.
17 李怀鑫,晏长根,林斌,等. 桩-土界面倾角和含水率对抗滑桩的阻滑效应分析[J]. 煤田地质与勘探,2023,51(5):123-132.
Li Huai-xin, Yan Chang-gen, Lin Bin,et al. Slip resistance effect of pile-soil interface inclination angle and moisture content on the anti-sliding pile[J]. Coal Geology & Exploration, 2023,51(5):123-132.
18 .土工试验方法标准 [S].
19 苏新斌, 廖晨聪, 刘世奥, 等. 基于预制滑动面的饱和黏土-结构物界面强度特性三轴试验研究[J]. 岩土力学, 2022, 43(10):2852-2860.
Su Xin-bin, Liao Chen-cong, Liu Shi-ao, et al. Triaxial test for strength characteristics of saturated clay-structure interface based on prefabricated sliding surface[J]. Rock and Soil Mechanics, 2022, 43(10):2852-2860.
20 樊玉峰, 肖晓春, 徐军, 等. 煤高度对组合岩煤力学性质及冲击倾向性的影响[J]. 煤炭学报,2020,45():649-659.
Fan Yu-feng, Xiao Xiao-chun, Xu Jun, et al. Mechanical properties of coal rock combinations and evaluation of impact tendency considering effects of the height portion of coal[J]. Journal of China coal society,2020,45(Sup.2):649-659.
21 王惠敏, 张云, 鄢丽芬. 粘性土试样高度对抗拉强度的影响[J]. 水文地质工程地质, 2012,39(1):68-71.
Wang Hui-min, Zhang Yun, Yan Li-fen. Effect of specimen depth on the tensile strength of cohesive soils[J]. Hydrogeology & Engineering Geology, 2012, 39(1):68-71.
22 Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(3): 233-245.
23 张慧梅, 陈敏, 孟祥振, 等. 不同倾角节理岩体损伤模型及力学特性[J]. 哈尔滨工程大学学报, 2022,43(6): 801-808.
Zhang Hui-mei, Chen Min, Meng Xiang-zhen, et al. Damage model and mechanical characteristics of jointed rock mass with different joint dip angles[J]. Journal of Harbin Engineering University, 2022,43(6):801-808.
24 Li C. A method for graphically presenting the deformation modulus of jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2001,34(1): 67-75.
[1] Xin-yu LI,Xian-zhang LING,Na QU. Statistical damage model of frozen expansive soil considering temperature effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2339-2349.
[2] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[3] CHAI Shou-xi, WANG Pei, WEI Li. Evaluation on anti-deformation capability of saline soil reinforced by wheat straw and lime on the basis of axial strain at failure [J]. , 2012, (03): 645-650.
[4] WANG Ming-yuan,SHI Ge-liang,DING Jin-hua,BAO Cheng-gang. Interface model and its parameters between geogrids and compacted expansive soil [J]. 吉林大学学报(工学版), 2010, 40(03): 688-0693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!