Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 355-365.doi: 10.13229/j.cnki.jdxbgxb.20230279

Previous Articles    

Attitude maneuvering planning method of remote sensing satellite based on improved adaptive pseudo-spectrum method

Guo-wei FAN(),Yu GAO,Quan-zhi LIU,Yang XIAO,Xue-ying LYU,Le ZHANG,Liu ZHANG()   

  1. College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China
  • Received:2023-03-28 Online:2025-01-01 Published:2025-03-28
  • Contact: Liu ZHANG E-mail:fanguowei@jlu.edu.cn;zhangliu@jlu.edu.cn

Abstract:

An improved hp adaptive Radau pseudospectral method is proposed for the multi-constrained attitude optimal manoeuvre planning problem of high-resolution flexural remote sensing satellites for Earth observation missions. The improved method is proposed to use a two-layer optimisation iteration strategy, with the residuals of the differential-algebraic constraint at sampling points with Gaussian distribution as the error evaluation criterion for optimisation and the quarter of the ratio of curvature maximum to standard deviation at each sampling point as the refinement criterion for quadratic optimisation, which together improve the efficiency of the solution of the method. Firstly, a rigid-flexible coupled state space equation for the optimal control method is established by combining the satellite dynamics, kinematics and the vibration equations of the flexural attachment, and secondly, an improved hp adaptive Radau pseudospectral method is used to transform the optimal control problem into a general non-linear programming. The problem is solved using a modified hp adaptive Radau pseudospectral method. The simulation results show that the method can generate optimal trajectories satisfying all constraints, and it takes less time and is more efficient than the traditional hp adaptive pseudospectral method with the same accuracy. The method provides a design basis for high-resolution remote sensing satellites to perform complex space missions, and has engineering significance.

Key words: flexible remote sensing satellite, hp adaptive, Radau pseudospectral method, multi-constraint, trajectory optimization

CLC Number: 

  • V448.22

Fig.1

Comparison of sampling point distribution before and after improvement"

Fig.2

Overall algorithm flow chart"

Fig.3

Simulation results of improved hp adaptive Radau pseudospectral method"

Fig.4

Comparison of satellite 3-axis attitude angles before and after improvement"

Fig.5

Comparison of satellite 3-axis angles velocity before and after improvement"

Fig.6

Comparison of satellite 3-axis control torques before and after improvement"

Table 1

Optimisation comparison of pseudospectral methods before and after improvement with different accuracies"

求解精度方法CPU时间/s配点数网格细化次数最大误差目标值tf/s
10-3hp法0.457 0214938.723 9*10-423.887 5
改进hp法0.457 2305138.522 6*10-423.887 5
10-4hp法1.414 686106108.842 7*10-523.889 5
改进hp法1.325 37015768.835 1*10-523.897 4
10-5hp法3.481 176214149.687*10-623.900 5
改进hp法2.282 74928469.267 6*10-623.900 6
10-6hp法10.308 88383209.827 7*10-723.900 7
改进hp法4.289 88649678.999*10-723.900 5
10-7hp法38.923 34723269.857 6*10-823.900 6
改进hp法30.479 6095099.702 2*10-823.900 5
1 张刘, 张晓寒, 岳庆兴, 等. 光学遥感卫星凝视成像姿态规划及快速仿真方法[J]. 吉林大学学报:工学版, 2021, 51(1):340-348.
Zhang Liu, Zhang Xiao-han, Yue Qing-xing, et al. Attitude planning and fast simulation method for staring imaging of optical remote sensing satellite[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 340-348.
2 Chen C K, Sreenath N. Control of coupled spatial two-body systems with nonholonomic constraints[J]. IEEE Conf Decis Control, 1993(2): 949-954.
3 Kolmanovsky I, Mcclamroch N H, Coppola V T. New results on control of multibody systems which conserve angular momen-tum[J]. J Dyn Control Syst, 1993, 1(4):447-462.
4 Reyhanoglu M, Mcclamroch N H. Planar reorientation maneuvers of space multibody systems using internal controls[J]. J Guid Control Dyn, 1992, 15(6):1475-1480.
5 Fernandes C, Gurvits L, Li Z X. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies[J]. IEEE Trans Autom Control, 1994, 39(3):450-463.
6 Karniadakis G E, Sherwin S J. Spectral/hp Element Methods for CFD[M]. New York: Oxford University Press, 1999.
7 Babuska I, Gui W. The h,p, and hp versions of the finite element method in 1 dimension. Part Ⅲ:the adaptive hp version[J].Numerische Mathematik, 1986, 49(6):659-684.
8 Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optim Control Appl Methods, 2011, 32(4):476-502.
9 DArby C L, Hager W W, Rao A V. Anhp-adaptive pseudospectral method for solving optimal control problems [J]. Optimal Control Applications & Methods,2011,32:476-502.
10 Patterson M A, Hager W W, Rao A V. A ph mesh refine-ment method for optimal control[J]. Optim Control Appl Methods, 2015, 36(4):398-421.
11 Liu F J, Hager W W, Rao A V. Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction[J]. J Franklin Inst, 2015, 47(10):4081-4106.
12 Patterson M A, Rao A V. GPOPS-Ⅱ: a matlab software for solvingmultiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocationmethods and sparse nonlinear pro-gramming[J]. ACM Trans Math Software, 2014, 41(1):1-37.
13 周文雅, 杨涤, 梁新刚. 利用高斯伪谱法求解最优气动辅助轨道转移[J]. 吉林大学学报: 工学版, 2010, 40(5): 1454-1459.
Zhou Wen-Ya, Yang Di, Liang Xin-Gang. Using Gauss pseudospectral method to optimize aeroassisted orbit transfer[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(5): 1454-1459.
14 Xiao L, Lv L, Liu P. A novel adaptive Gauss pseudospec-tral method for nonlinear optimal control of constrained hypersonic re-entry vehicle problem[J]. International Journal of Adaptive Control and Signal Processing, 2018, 32(9): 1243-1258.
15 Hong-bin WWang, Liu Zhong, Luo Ya-song, et al. USV optimal obstacle avoidance trajectory planning based on improved adaptive hp-Radau pseudospectral method[C]∥The 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 2021: 3784-3788.
16 Meng B, Zhao Y. The dynamics characteristics of flexible spacecraft and its closed-loop stability with passive control[J].Journal of Systems Science & Complexity,2021,34(3): 860-872.
17 范国伟, 王绍举, 徐伟, 等. 挠性卫星姿态机动三段式轨迹规划与滚动跟踪控制[J]. 控制理论与应用, 2018, 35(9): 1260-1271.
Fan Guo-wei, Wang Shao-ju, Xu Wei, et al. Three-segment trajectory plan and moving horizon tracking control of flexible satellite attitude maneuver[J].Control Theory & Applications, 2018, 35(9): 1260-1271.
18 程小军, 崔祜涛, 徐瑞, 等. 几何约束下的航天器姿态机动控制[J]. 控制与决策, 2021, 27(5): 724-730.
Cheng Xiao-jun, Cui Hu-tao, Xu Rui,et al. Attitude maneuver control of spacecraft under geometric constraints[J]. Control and Decision, 2012, 27(5): 724-730.
[1] Hua CAI,Ting-ting KOU,Yi-ning YANG,Zhi-yong MA,Wei-gang WANG,Jun-xi SUN. Three-dimensional vehicle multi-target tracking based on trajectory optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2338-2347.
[2] LI Ai-juan, LI Shun-ming, SHEN Huan, MIAO Xiao-dong. ACT-R based dynamic trajectory optimization method for intelligent vehicles [J]. 吉林大学学报(工学版), 2013, 43(05): 1184-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!