Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 503-511.doi: 10.13229/j.cnki.jdxbgxb.20230425

Previous Articles    

Design and simulation study on air supply system pressure controller for fuel cell engine in multi-working conditions

Hui-chao ZHAO(),Hua-yang LIU,Hong-hui ZHAO,Yu-peng WANG,Ling-hai HAN()   

  1. China FAW Group Co. ,Ltd. ,Changchun 130000,China
  • Received:2023-04-23 Online:2025-02-01 Published:2025-04-16
  • Contact: Ling-hai HAN E-mail:zhaohuichao@faw.com.cn;hanlinghai@faw.com.cn

Abstract:

With the development of the hydrogen fuel cell vehicles industry, the control of proton exchange membrane fuel cell engine has become the focus of research. To improve the life and efficiency of fuel cell engines, the air supply pressure should be precisely controlled. Therefore, we primarily research the control of air supply pressure in this paper. Firstly, the modeling of air supply pressure is established. Secondly, considering the existence of model uncertainty and disturbances, we design the disturbance observer to estimate and compensate this influences. Thirdly, a new slide mode control method is proposed to achieve accurate pressure control based on the established mathematical model. Finally, the effectiveness of the air supply pressure control strategy is verified through four simulation conditions.

Key words: proton exchange membrane fuel cell engines, air supply pressure control, disturbance observer, new slide mode control

CLC Number: 

  • TK91

Fig. 1

Structure diagram of PEMFC"

Fig. 2

Control diagram"

Fig.3

Model verification"

Fig. 4

AMESim simulation model diagram"

Fig. 5

Control strategy model diagram"

Fig. 6

Simulation results of working condition 1"

Fig. 7

Simulation results of working condition 2"

Fig. 8

Simulation results of working condition 3"

Fig. 9

Simulation results of working condition4"

1 Liu Z, Chen H C, Peng L, et al. Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell[J]. Energy, 2022, 240: 122490.
2 Zakaria B, Mohammed B, Atallah B, et al. Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10435-10447.
3 Zhao D D, Li F, Rui M, et al. An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5523-5532.
4 Li C, Zhao H H, Liu H Y, et al. Gas supply control and experimental validation for polymer electrolyte membrane fuel cells[J]. Mechatronics, 2023, 91: 102958.
5 Li M, Yin H, Ding T W, et al. Air flow rate and pressure control approach for the air supply subsystems in PEMFCs[J]. ISA Transactions, 2021, 128: 624-634.
6 Zhao D D, Gao F, Dou M F, et al. Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1): 51-61.
7 陈松林, 赵海香. 三阶扩张状态观测器的优化参数配置方法[J].控制与决策, 2014, 29(10): 1851-1855.
Chen Song-lin, Zhao Hai-xiang. Parameter optimization of third-order extended state observer[J]. Control and Decision, 2014, 29(10): 1851-1855.
8 皇金锋, 张世欣, 杨艺. 基于扩张状态观测器的单电感双输出Buck变换器滑模解耦控制[J]. 湖南大学学报: 自然科学版, 2023, 50(2): 138-149.
Huang Jin-feng, Zhang Shi-xin, Yang Yi. Sliding mode decoupling control of single inductor dual output Buck converter based on extended state observer[J]. Journal of Hunan University (Natural Sciences), 2023, 50(2): 138-149.
9 任乘乘, 宋军, 何舒平. 基于扩展状态观测器的随机隐Markov正跳变系统有限时间异步控制[J]. 控制理论与应用, 2021, 38(11): 1891-1900.
Ren Cheng-cheng, Song Jun, He Shu-ping. Extended state observer based finite time asynchronous control of a class of stochastic positive hidden Markov jump systems[J]. Control Theory & Applications, 2021, 38(11): 1891-1900.
10 高金武, 王义琳, 刘华洋, 等. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J].吉林大学学报: 工学版, 2022, 52(9): 2156-2167.
Gao Jin-wu, Wang Yi-lin, Liu Hua-yang, et al. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2156-2167.
11 刘邱, 赵东亚. 单输入单输出系统离散积分滑模预测控制[J]. 上海交通大学学报, 2020, 54(9): 898-903.
Liu Qiu, Zhao Dong-ya. Discrete-time integral sliding mode predictive control for single input single output systems[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 898-903.
12 江道根, 江维, 潘世华, 等. 不确定非线性系统自适应反演积分滑模控制[J]. 控制工程, 2021, 28(9): 1780-1786.
Jiang Dao-gen, Jiang Wei, Pan Shi-hua, et al. Adaptive integral back-stepping sliding mode control for uncertain nonlinear systems[J]. Control Engineering of China, 2021, 28(9): 1780-1786.
13 Javaid U, Mehmood A, Iqbal J, et al. Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies[J]. Energy, 2023, 269: 126717.
14 赵洪坛, 朱大奇. UUV水下模型预测滑模跟踪控制算法[J]. 控制工程, 2022, 29(7): 1195-1203.
Zhao Hong-tan, Zhu Da-qi. Underwater model predictive sliding mode tracking control algorithm for UUV[J]. Control Engineering of China, 2022, 29(7): 1195-1203.
15 傅健, 吴庆宪, 姜长生, 等. 连续非线性系统的滑模鲁棒正不变集控制[J]. 自动化学报, 2011, 37(11): 1395-1401.
Fu Jian, Wu Qing-xian, Jiang Chang-Sheng, et al. Robust sliding mode positively invariant set for nonlinear continuous system[J]. Automatica Sinica, 2011, 37(11): 1395-1401.
16 王乐园, 王树波. 基于扰动估计器的永磁同步电机滑模控制[J]. 自动化与仪表, 2022, 37(8): 30-35.
Wang Le-yuan, Wang Shu-bo. Sliding mode approach of PMSM using disturbance estimator[J]. Process Automation Instrumentation, 2022, 37(8): 30-35.
[1] Bin XIAN,Jie-qi LI,Xun GU. Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1926-1933.
[2] Xiao-dong SUN,Yao ZHANG,Long CHEN. Deadbeat predictive voltage compensation control for permanent magnet synchronous hub motors of electric vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2213-2224.
[3] Jiang-qi LONG,Jin-tao XIANG,Ping YU,Jun-cheng WANG. Linear disturbance observer suitable for sliding mode control of nonlinear active suspension [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1230-1240.
[4] Shu-you YU,Huan CHANG,Ling-yu MENG,Yang GUO,Ting QU. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1097-1105.
[5] Jia-xu ZHANG,Xin-zhi WANG,Jian ZHAO,Zheng-tang SHI. Path planning and discrete sliding mode tracking control for high⁃speed lane changing collision avoidance of vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1081-1090.
[6] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[7] ZHANG Hu, ZHANG Jian-wei, GUO Kong-hui, LI Yang. Robust prediction current control of permanent magnet synchronous motor for EPS based disturbance observer [J]. 吉林大学学报(工学版), 2015, 45(3): 711-718.
[8] HUANG Guo-yong. Terminal sliding mode control based on neural network disturbance observer [J]. 吉林大学学报(工学版), 2011, 41(6): 1726-1730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!