Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3302-3308.doi: 10.13229/j.cnki.jdxbgxb.20230956

Previous Articles    

Passenger flow prediction of urban public transportation hubs based on real-time data features and XGBoost algorithm

Ming-hui YAO(),Wei-chao WANG,Qi-liang WU,Yan NIU   

  1. School of Artificial Intelligence,TianGong University,Tianjin 300387,China
  • Received:2023-09-08 Online:2024-11-01 Published:2025-04-24

Abstract:

Aiming at the randomness and correlation of passenger flow in urban public transportation hubs, a real-time data feature and XGBoost algorithm based passenger flow prediction for urban public transportation hubs is proposed. Firstly, the automatic encoder is optimized using the AdamOptimizer algorithm, and the real-time passenger flow data feature matrix of urban public transportation hubs is inputted into the optimized automatic encoder to extract data features, Then, an XGBoost model is constructed as the passenger flow prediction model for urban public transportation hubs. Differential evolution algorithm is used to iteratively optimize the model parameters, and the data features are input into the trained XGBoost model to achieve passenger flow prediction for urban public transportation hubs. The experimental results show that the proposed methods have lower RMSE and MAPE, and require less prediction time.

Key words: real time data features, passenger flow forecast, automatic encoder, xgboost algorithm, differential evolution algorithm

CLC Number: 

  • U293.13

Fig.1

Training process of passenger flow prediction model for urban public transportation hubs"

Fig.2

Comparison of root mean square error of prediction results by various methods"

Fig.3

Comparison of average absolute percentage error of prediction results by various methods"

Table 1

Comparison of time used for predictions by various methods"

方法预测时间/s
本文0.18
文献[42.05
文献[51.29
1 刘向阳. 城市轨道交通枢纽治理: 理论框架与运作模式[J]. 中国铁道科学, 2022, 43(5): 188-198.
Liu Xiang-yang. Governance of urban rail transit hub: theoretical framework and operational mode[J]. China Railway Science, 2022, 43(5): 188-198.
2 何景师, 陈晓忠, 脱俗. 城市轨道交通应急能力影响因素及评价研究[J]. 城市轨道交通研究, 2021, 24(12): 71-76.
He Jing-shi, Chen Xiao-zhong, Su Tuo. Research on the influencing factors and evaluation of urban rail transit emergency capability[J]. Urban Mass Transit, 2021, 24(12): 71-76.
3 张文娟, 杨皓哲, 张彬, 等. 考虑多时间尺度特征的城市轨道交通短时客流量预测模型[J]. 交通运输系统工程与信息, 2022, 22(6): 212-223.
Zhang Wen-juan, Yang Hao-zhe, Zhang Bin, et al. Short-time passenger flow prediction model of urban rail transit considering multi-timescale features[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 212-223.
4 帅春燕, 谢亚威, 单君, 等. 基于SSA-SVR模型的城市轨道交通短时进站客流预测[J]. 都市快轨交通, 2022, 35(5): 76-83.
Chun-yan Shuai, Xie Ya-wei, Shan Jun, et al. Prediction of short-term inbound passenger flow of urban rail transit based on the singular spectrum analysis and support vector regression model[J]. Urban Rapid Rail Transit, 2022, 35(5): 76-83.
5 赵明伟, 张文胜. 基于IPSO-LSTM组合模型的城市轨道交通短时客流预测[J]. 铁道运输与经济, 2022, 44(2): 123-130.
Zhao Ming-wei, Zhang Wen-sheng. Short-term passenger flow prediction of urban rail transit based on IPSO-LSTM combined model[J]. Railway Transport and Economy, 2022, 44(2): 123-130.
6 韩云飞, 谢佳, 蔡涛, 等. 基于自动编码器的锂离子电池状态评估方法[J]. 电力系统自动化, 2021, 45(24): 41-48.
Han Yun-fei, Xie Jia, Cai Tao, et al. Autoencoder-based state evaluation method for lithium-ion battery[J]. Automation of Electric Power Systems, 2021, 45(24): 41-48.
7 张晨旭, 李圣辰, 邵曦. 基于自编码器的无监督机器异常声检测[J]. 复旦学报: 自然科学版, 2021, 60(3): 297-302.
Zhang Chen-xu, Li Sheng-chen, Shao Xi. Unsupervised detection of anomalous sounds for machine based on auto-encoder[J]. Journal of Fudan University (Natural Science Edition), 2021, 60(3): 297-302.
8 林钰棽, 魏云龙, 陈琪琪, 等. 一种嵌入式计算平台的Sigmoid函数优化方法[J]. 小型微型计算机系统, 2021, 42(10): 2053-2058.
Lin Yu-chen, Wei Yun-long, Chen Qi-qi, et al. A Sigmoid function optimization method for embedded computing platform[J]. Journal of Chinese Computer Systems, 2021, 42(10): 2053-2058.
9 徐文英, 王大军, 卢朝阳, 等. 基于XGBoost算法的终端区进场航空器飞行时间预测[J]. 北京交通大学学报, 2022, 46(6): 72-79.
Xu Wen-ying, Wang Da-jun, Lu Chao-yang, et al. Flight time prediction for aircraft approaching terminal area based on XGBoost algorithm[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 72-79.
10 张照贝, 顾春华, 温蜜. 基于XGBoost和QRLSTM的超短期负荷预测方法[J]. 计算机仿真, 2022, 39(1): 90-95.
Zhang Zhao-bei, Gu Chun-hua, Wen Mi. Ultra-short-term load forecasting method based on XGBoost and QRLSTM[J]. Computer Simulation, 2022, 39(1): 90-95.
11 孙梦婷, 魏海平, 李星滢, 等. 利用CART分类树分类检测交通拥堵点[J]. 武汉大学学报: 信息科学版, 2022, 47(5): 683-692.
Sun Meng-ting, Wei Hai-ping, Li Xing-ying, et al. Using CART classification tree to detect traffic congestion points[J]. Journal of Wuhan University (Information Science Edition), 2022, 47(5): 683-692.
12 樊攀云, 李敏. 基于自适应正则项的非均匀B样条肺部图像配准[J]. 激光与光电子学进展, 2022, 59(10): 189-198.
Fan Pan-yun, Li Min. Nonuniform B-spline lung image registration based on adaptive regularization term[J]. Laser and Optoelectronics Progress, 2022, 59(10): 189-198.
13 汤世昕, 沈育静, 陈纪康, 等. 改进螺旋桨敞水性能预报的泰勒展开边界元法[J]. 哈尔滨工程大学学报, 2022, 43(7): 928-935.
Tang Shi-xin, Shen Yu-jing, Chen Ji-kang, et al. Taylor expansion boundary element method for propeller steady hydrodynamic performance prediction[J]. Journal of Harbin Engineering University, 2022, 43(7): 928-935.
14 曹义亲, 刘龙标, 何恬, 等. 基于贪心选择及斜率探测扩充的轨面提取方法[J]. 计算机科学与探索, 2022, 16(1): 205-216.
Cao Yi-qin, Liu Long-biao, He Tian, et al. Method of rail surface extraction based on greedy selection and slope detection expansion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 205-216.
15 吴桂芳, 崔勇, 刘宏, 等. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001.
Wu Gui-fang, Cui Yong, Liu Hong, et al. Decoupling calibration method for three-dimensional electric field sensors based on differential evolution algorithm[J]. Journal of Electrical Engineering Technology, 2021, 36(19): 3993-4001.
[1] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[2] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[3] Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304.
[4] Hui-zhen ZHANG,Zheng-kai GAO,Jian-qiang LI,Chen-xi WANG,Yu-biao PAN,Cheng WANG,Jing WANG. Short⁃term passenger flow forecasting of urban rail transit based on recurrent neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 430-438.
[5] Bing-hai ZHOU,Zhao-xu HE. Dynamic material handling scheduling for mixed⁃model assembly lines based on line⁃integrated supermarkets [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1809-1817.
[6] KONG Ying-xiu, ZHAO Ding-xuan, YANG Bin, LI Tian-yu, HAN Jing-yuan. Robust static output feedback control using PSO-DE algorithm and LMI [J]. 吉林大学学报(工学版), 2013, 43(05): 1375-1380.
[7] Guo Zhen-u,Ye Min,Cheng Bo,Kang Long-un,Cao Bing-ang . Shape optimization of high speed energy storage flywheel based on differential evolution [J]. 吉林大学学报(工学版), 2008, 38(01): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!