Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2131-2137.doi: 10.13229/j.cnki.jdxbgxb.20240503

Previous Articles     Next Articles

Semantic segmentation algorithm for multi temporal high⁃resolution satellite remote sensing images

Ying YU1,2(),Chun-ping WANG1,2,Ren-ke KOU1,Bo-xiong YANG2,Lei WANG3,4,Fu-jun ZHAO2,Qiang FU1()   

  1. 1.Army Engineering University of PLA,Shijiazhuang 050003,China
    2.Academician Workstation of Chunming Rong,University of Sanya,Sanya 572022,China
    3.Key Laboratory of Earth Observation of Hainan Province,Hainan Aerospace Information Research Institute,Sanya 572029,China
    4.Key Laboratory of Earth Observation of Hainan Province,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
  • Received:2024-05-10 Online:2025-06-01 Published:2025-07-23
  • Contact: Qiang FU E-mail:yingyu@sanyau.edu.cn;Fu_Qiang@aeu.edu.cn

Abstract:

In order to solve the problem of inaccurate recognition of various semantic objects in remote sensing images using a single temporal low resolution image, a multi temporal high-resolution satellite remote sensing image semantic segmentation algorithm was proposed. By solving the multi temporal resolution of image information, remote sensing targets are partitioned, and various semantic objects and features of remote sensing images are accurately identified and extracted. Based on the definition of scale function, the segmentation weight is calculated to realize accurate recognition and segmentation of semantic objects in remote sensing images. The experimental results show that the recognition accuracy of semantic objects is significantly improved by the proposed method, and the maximum numerical difference between the experimental value and the real value of each semantic object content in the segmented ground object information does not exceed 0.2%, which provides strong support for the application of remote sensing images.

Key words: multi temporal high-resolution, satellite remote sensing images, semantic segmentation, significant remote sensing areas, scale function, segmentation weight

CLC Number: 

  • TN929

Fig.1

Schematic diagram of the image remote sensing target partition"

Fig.2

Image of satellite remote sensing image data set"

Table 1

Annotation parameters of the semantic information of the satellite remote sensing data set"

标记地物信息名称标记颜色BRG颜色值
1背景物(0,0,0)
2植物(127,0,255)
3建筑结构(0,255,255)
4水系结构(255, 0,191)
5连通道路(60,220,20)

Fig.3

Satellite remote sensing image data set after color annotation"

Fig.4

Portion of semantic objects in the satellite remote sensing image data set"

Fig.5

Comparison of the semantic segmentation results of satellite remote sensing images"

[1] 王志敏, 王加胜, 王丽蒙. 基于注意力机制的U型网络遥感影像分割[J]. 计算机仿真, 2023, 40(3): 232-235, 240.
Wang Zhi-min, Wang Jia-sheng, Wang Li-meng. Remote sensing image segmentation based on U-shaped network fused with attention mechanism[J]. Computer Simulation, 2023, 40(3): 232-235, 240.
[2] Lang F K, Zhang M, Zhao J Q, et al. Semantic segmentation for multisource remote sensing images incorporating feature slice reconstruction and attention upsampling[J]. International Journal of Remote Sensing, 2024, 45(8): 2761-2785.
[3] 王兴武, 雷涛, 王营博, 等. 基于多模态互补特征学习的遥感影像语义分割[J]. 智能系统学报, 2022, 17(6): 1123-1133.
Wang Xing-wu, Lei Tao, Wang Ying-bo, et al. Semantic segmentation of remote sensing image based on multimodal complementary feature learning[J]. CAAI Transactions on Intelligent Systems, 2022, 17(6): 1123-1133.
[4] 谭大宁, 刘瑜, 姚力波, 等. 基于视觉注意力机制的多源遥感图像语义分割[J]. 信号处理, 2022, 38(6): 1180-1191.
Tan Da-ning, Liu Yu, Yao Li-bo, et al. Semantic segmentation of multi-source remote sensing images based on visual attention mechanism[J]. Journal of Signal Processing, 2022, 38(6): 1180-1191.
[5] Hou Y D, Wu Z B, Ren X H, et al. BFFNet: a bidirectional feature fusion network for semantic segmentation of remote sensing objects[J]. International Journal of Intelligent Computing and Cybernetics, 2024, 17(1): 20-37.
[6] 蔡超丽, 李纯纯, 黄琳, 等. 基于多尺度特征融合注意力CNN的遥感图像语义分割方法[J]. 桂林理工大学学报, 2022, 42(4): 968-976.
Cai Chao-li, Li Chun-chun, Huang Lin, et al. Remote sensing image semantic segmentation method based on multi-scale feature fusion attention CNN[J]. Journal of Guilin University of Technology, 2022, 42(4): 968-976.
[7] 夏英, 黄秉坤. 采用改进YOLOv3的高分辨率遥感图像目标检测[J]. 重庆邮电大学学报:自然科学版, 2022, 34(3): 383-392.
Xia Ying, Huang Bing-kun. Object detection of high resolution remote sensing images based on improved YOLOv3[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2022, 34(3): 383-392.
[8] 张文凯, 刘文杰, 孙显, 等. 多源特征自适应融合网络的高分遥感影像语义分割[J]. 中国图象图形学报, 2022, 27(8): 2516-2526.
Zhang Wen-kai, Liu Wen-jie, Sun Xian, et al. Multi-source features adaptation fusion network for semantic segmentation in high-resolution remote sensing images[J]. Journal of Image and Graphics, 2022, 27(8): 2516-2526.
[9] 刘春娟, 乔泽, 闫浩文, 等. 基于多尺度互注意力的遥感图像语义分割网络[J]. 浙江大学学报: 工学版, 2023, 57(7): 1335-1344.
Liu Chun-juan, Qiao Ze, Yan Hao-wen, et al. Semantic segmentation network for remote sensing image based on multi-scale mutual attention[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(7): 1335-1344.
[10] 朱冰, 李紫薇, 李奇. 基于改进SegNet的遥感图像建筑物分割方法[J]. 吉林大学学报: 工学版, 2023, 53(1): 248-254.
Zhu Bing, Li Zi-wei, Li Qi. Building segmentation method of remote sensing image based on improved SegNet[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 248-254.
[11] 苏志鹏, 李景文, 姜建武, 等. 基于改进DeepLabV3+的遥感影像语义分割方法[J]. 激光与光电子学进展, 2023, 60(6): 359-366.
Su Zhi-peng, Li Jing-wen, Jiang Jian-wu, et al. Semantic segmentation method for remote sensing images based on improved DeepLabV3+[J]. Laser & Optoelectronics Progress, 2023, 60(6): 359-366.
[12] 杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报: 信息科学版, 2022, 47(7): 1071-1080.
Yang Jun, Yu Xi-zi. Semantic segmentation of high resolution remote sensing images based on improved FuseNet combined with atrous convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1071-1080.
[13] 张金锋, 刘军, 谢枫, 等. 基于改进Deeplabv3+网络的遥感图像选站选线语义分割[J]. 控制工程, 2022, 29(3): 558-563.
Zhang Jin-feng, Liu Jun, Xie Feng, et al. Semantic segmentation of station selection and line selection in remote sensing image based on improved Deeplabv3+ network[J]. Control Engineering of China, 2022, 29(3): 558-563.
[14] 王春华, 李恩泽, 肖敏. 多特征融合和孪生注意力网络的高分辨率遥感图像目标检测[J]. 吉林大学学报: 工学版, 2024, 54(1): 240-250.
Wang Chun-hua, Li En-ze, Xiao Min. Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network[J].Journal of Jilin University (Engineering and Technology Edition), 2024, 54(1): 240-250.
[1] Hua CAI,Yu-yao WANG,Qiang FU,Zhi-yong MA,Wei-gang WANG,Chen-jie ZHANG. Semantic segmentation network based on attention mechanism and feature fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1384-1395.
[2] Yun QUE,Xue JI,Zi-ping JIANG,Yi DAI,Ye-fei WANG,Jia CHEN. Semantic segmentation algorithm of pavement cracks based on GAN data augmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3166-3175.
[3] Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Ren-yun, Zhang Yi-min, Yu Fan-hua . Robust optimization design for reliability based on
grey particle swarm algorithm
[J]. 吉林大学学报(工学版), 2006, 36(06): 893 -897 .
[2] Lu Shou-feng,Yang Zhao-sheng,Liu Xi-min . Synergy of traffic signal control and route guidance
based on multiagent system
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 143 -146 .
[3] Li He;Zhao Xiao-hui;Liu Yi . Genetic strategy based adaptive resource allocation algorithm for multiuser OFDM systems with proportional rate constrains
[J]. 吉林大学学报(工学版), 2008, 38(03): 709 -0714 .
[4] Shi Gang, Shi Yong-jiu, Wang Yuan-qing. Calculational method of shear deformation for beam-to-column connection panel zone in steel frames[J]. 吉林大学学报(工学版), 2006, 36(04): 462 -466 .
[5] Zhang Jian-hong,Zuo Chun-cheng,Qian Sheng-jun,Qi Pei-zheng . Simulation of impact test bench with pendulum
based on bearing clearance model
[J]. 吉林大学学报(工学版), 2007, 37(03): 553 -0557 .
[6] Guo Kong-hui,Wu Hai-dong,Lu Dang . Brush model for steadystate sideslip of tire on icy road[J]. 吉林大学学报(工学版), 2007, 37(02): 253 -0258 .
[7] Zhao Ding-xuan;Feng Shi-zhu;Gong Ming-de;Deng Le. Improved force feedback control method for construction telerobot [J]. 吉林大学学报(工学版), 2008, 38(03): 575 -0579 .
[8] Qian Ying ,Zhang Ying, Yu Yong-sen, Zheng Wei,Zhang Yu-shu . Novel stress sensor of FBG on unique cantilever[J]. 吉林大学学报(工学版), 2006, 36(05): 757 -0760 .
[9] Yu Sheng-bao,Zhang Xian-tao,Chen Tian-qi,Wang Zhao-ming . Electrical detection with noncontact electrode[J]. 吉林大学学报(工学版), 2008, 38(02): 370 -0373 .
[10] JIN Jing-fu, CONG Qian, YANG Xiao-dong. Freezing Adhesive Characteristics of Engineering Materials and[J]. 吉林大学学报(工学版), 2005, 35(05): 486 -0489 .