Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2761-2770.doi: 10.13229/j.cnki.jdxbgxb.20240737

Previous Articles    

Optimization method of party affairs activity scheduling based on directional differential evolution algorithm

Pei-ming SUN1(),Zhe WANG2()   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130012,China
    2.Big Data and Network Management Center,Jilin University,Changchun 130015,China
  • Received:2024-07-04 Online:2025-08-01 Published:2025-11-14
  • Contact: Zhe WANG E-mail:sunpm@jlu.edu.cn;wangzhe@jlu.edu.cn

Abstract:

To address the issues of unreasonable project activity scheduling and high expenditure, this paper proposes an improved differential evolution algorithm based on directional crossover mechanism (DirDE). The mechanism enhances the algorithm's convergence speed by guiding the global exploration and local exploitation directions of the population. Meanwhile, this mechanism helps the algorithm jump out of the local search and avoid falling into the local optimum based on the gene guidance of the parent individuals. In the experimental section, benchmark function experiments are designed to verify the optimization ability of the DirDE. The experimental analysis results demonstrate that DirDE exhibits better convergence, accuracy, and the ability to avoid falling into local optima. Finally, the method proposed in this paper was tested through simulation experiments on a real-world linear programming model for multi-project party affairs activity scheduling optimization. The algorithm demonstrated its competitiveness and can serve as an effective tool for solving real-world party affairs activity scheduling problems.

Key words: artificial intelligence technology, evolutionary algorithm, differential evolution algorithm, party affairs activity scheduling, directional crossover mechanism

CLC Number: 

  • TP391.7

Fig.1

Flowchart of DirDE"

Table 1

Analysis result of WSRT and FT"

+/-/=MeanRank
DirDE1.5881
DE6/0/42.4602
SCA10/0/04.4665
PSO9/0/14.7566
CS8/0/24.0634
MFO8/0/23.4683

Fig.2

Convergence curve of this experiment"

Fig.3

Balance analysis experiment"

Table 2

Rank result of WSRT"

DirDEDirDE1DirDE2DirDE3DirDE4
pcr0.80.20.40.61
F135412
F223145
F315324
F445312
F515234
F611511
F724153
F812354
F951342
F1042531
AVG2.43.332.92.8
rank15432

Table 3

Details of IEEE CEC 2017"

Functionsfmin
Unimodal FunctionsF1Shifted and Rotated Bent Cigar Function100
Multimodal FunctionsF2Shifted and Rotated Rastrigins Function500
F3Shifted and Rotated Lunacek Bi_Rastrigin Function700
F4Shifted and Rotated Non-Continuous Rastrigins Function800
Hybrid FunctionsF5Hybrid Function 2 (N=3)1 200
F6Hybrid Function 5 (N=4)1 500
F7Hybrid Function 6 (N=5)1 900
Composition FunctionsF8Composition Function 2 (N=3)2 200
F9Composition Function 10 (N=3)3 000

Table 4

Result of WSRT and FT on CEC 2017"

+/-/=MeanRank
DirDE1.9221
SCA9/0/06.3897
PSO8/0/14.6265
MFO9/0/04.4854
BA7/1/14.7196
ACOR7/1/12.3302
GWO7/0/23.5303

Table 5

P-value result of WSRT"

SCAPSOMFO
F11.734398E-065.446250E-021.734398E-06
F21.734398E-061.734398E-061.734398E-06
F31.734398E-069.842142E-032.126636E-06
F41.734398E-061.734398E-061.734398E-06
F51.734398E-061.734398E-061.493564E-05
F61.734398E-061.734398E-063.882182E-06
F71.734398E-061.734398E-061.798848E-05
F81.238080E-058.216736E-033.317258E-04
F91.734398E-061.734398E-061.734398E-06
BAACDRCWO
F11.360111E-052.584559E-031.734398E-06
F21.734398E-061.382036E-035.709650E-02
F31.734398E-064.276669E-024.284300E-01
F41.734398E-061.024633E-053.000989E-02
F54.528065E-012.126636E-065.216493E-06
F61.734398E-066.156406E-041.734398E-06
F71.734398E-062.957462E-031.734398E-06
F81.126540E-053.161765E-034.070231E-02
F91.734398E-069.753872E-011.734398E-06

Fig.4

Convergence curve of this experiment"

Table 6

Parameter of the problem"

项目活动时长/min费用/(元·min-1费用时段/时
A60211:00-12:00
10其他
B511810:00-13:00
915:00-16:00
C60109:00-10:00
30其他
D80159:00-13:00
513:00-14:00
E60314:00-15:00
6其他
F492010:00-11:00
50其他

Table 7

Result of this problem"

优化结果项目执行顺序及时间最优费用(元)
9:00-10:0010:00-11:0011:00-12:0013:00-14:0014:00-15:0015:00-16:00
方案一CFBAED4 560
方案二CFADEB4 020
方案三CFBEAF4 740
方案四CBADEF5 280
方案五CFADEB4 020

Table A1

Pseudo-code of DirDE"

算法1 DirDE的伪代码

Input MaxFEs, ND

Output 最优个体;

初始化算法种群;

计算个体的适应度值和权重;

While FEs<MaxFEs

执行越界调整机制;

计算个体的适应度值;

FEs=FEs+1;

Fori=1:N

Forj=1:d

基于基因突变更新个体位置;

基于基因交叉更新个体位置;

End For

基于导向交叉机制更新个体位置;

End For

计算适应度值并更新种群;

End While

Table A2

Analysis result of this experiment"

FunctionF1F2
ItemAVGSTDAVGSTD
DirDE0.557 657 5980.278 898 964-7 407.076 354770.578 328 1
DE0.728 432 3660.195 771 252-6 352.436 737335.908 586 9
SCA3.463 383 2562.883 883 188-3 463.091 399377.177 083 1
PSO118.259 697 325.314 616 37-4 252.494 79529.673 131 6
CS9.300 416 5523.962 614 375-5 096.836 48277.075 886
MFO7.125 845 7812.879 406 697-7 668.898 381615.144 348 2
FunctionF3F4
ItemAVGSTDAVGSTD
DirDE54.319 193 114.030 728 527.999 909 6912.009 980 328
DE183.135 39114.863 933 6110.483 920 270.959 329 059
SCA141.113 082 353.772 90315.996 416 125.074 727 384
PSO378.796 243 423.869 223 949.376 909 1190.431 917 684
CS274.151 584 819.584 280 0418.299 116 370.982 505 883
MFO231.936 12730.214 606 5618.673 543 761.611 933 587
FunctionF5F6
ItemAVGSTDAVGSTD
DirDE10.494 579 165.563 283 586-3.862 782 1482.323 71E-15
DE15.131 119 953.546 735 529-3.862 782 1483.449 56E-14
SCA27.105 499 320.321 418 31-3.843 345 5650.011 715 935
PSO11.305 354 24.217 776 349-3.827 018 260.040 709 919
CS139.046 820 830.881 430 44-3.862 007 150.000 704 96
MFO105.320 426 443.043 307 31-3.862 782 1483.875 8E-13

Table A3

Analysis result of this experiment"

FunctionF1F2F3
ItemAVGSTDAVGSTDAVGSTD
DirDE1.092 931E+082.212 688E+085.846 401E+022.561 572E+018.926 684E+027.053 235E+01
SCA1.289 989E+102.457 938E+097.737 518E+022.371 079E+011.135 049E+034.023 382E+01
PSO1.352 446E+081.367 686E+077.445 544E+023.356 733E+019.222 105E+021.684 050E+01
MFO1.217 337E+108.461 701E+096.922 898E+024.647 947E+011.205 677E+032.140 630E+02
BA5.619 193E+052.695 110E+058.427 445E+025.995 086E+011.640 864E+031.887 981E+02
ACOR1.279 941E+084.157 953E+086.228 275E+025.413 305E+019.239 613E+024.667 633E+01
GWO2.059 945E+091.476 777E+095.952 539E+021.603 076E+018.757 640E+024.969 671E+01
FunctionF4F5F6
ItemAVGSTDAVGSTDAVGSTD
DirDE8.764 083E+021.842 384E+012.643 164E+063.032 367E+066.000 447E+034.180 609E+03
SCA1.044 130E+031.855 794E+011.123 463E+092.351 720E+081.442 318E+071.064 585E+07
PSO9.923 751E+022.074 594E+012.459 612E+071.160 091E+074.403 589E+052.020 156E+05
MFO1.011 942E+035.117 548E+011.688 046E+083.085 008E+088.719 485E+049.509 899E+04
BA1.054 805E+036.167 749E+011.899 769E+061.474 694E+061.206 038E+059.515 084E+04
ACOR9.661 319E+026.441 827E+011.009 128E+051.353 330E+051.884 394E+041.384 608E+04
GWO8.869 313E+022.092 020E+016.627 266E+078.700 020E+075.720 841E+051.253 549E+06
FunctionF7F8F9
ItemAVGSTDAVGSTDAVGSTD
DirDE8.458 941E+037.325 525E+033.572 617E+032.551 103E+031.465 001E+041.618 847E+04
SCA2.467 860E+071.369 098E+077.859 300E+032.651 573E+037.135 765E+073.288 423E+07
PSO1.458 378E+066.445 970E+055.915 285E+032.617 408E+033.448 082E+061.292 263E+06
MFO6.537 615E+061.967 174E+076.541 296E+039.862 322E+026.724 310E+059.925 926E+05
BA5.745 009E+052.344 434E+057.008 006E+031.133 923E+031.198 056E+067.352 027E+05
ACOR2.386 343E+042.081 451E+045.684 520E+031.987 487E+031.209 415E+044.639 550E+03
GWO5.152 403E+055.453 098E+054.449 929E+031.477 685E+035.379 915E+064.706 951E+06
[1] Storn R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[2] Zhao D. Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation[J]. Expert Systems with Applications,2021, 167: 114122.
[3] 赵鑫, 杨雄飞, 钱育蓉. 改进的蚁群优化算法求解旅行商问题[J]. 计算机工程与设计, 2022, 43(4): 962-968.
Zhao Xin, Yang Xiong-fei, Qian Yu-rong. Improved ant colony optimization algorithm for TSP[J]. Computer Engineering and Design, 2022, 43(4): 962-968.
[4] 肖耀涛. 基于改进蚁群优化算法的云计算资源调度 [J]. 微型电脑应用, 2022, 38(2): 160-163.
Xiao Yao-tao. Cloud computing resource scheduling based on improved ant colony optimization algorithm[J]. Microcomputer Applications, 2022, 38(2): 160-163.
[5] 朱显辉, 于越, 师楠, 等. BP神经网络的分层优化研究及其在风电功率预测中的应用[J]. 高压电器, 2022, 58(2): 158-163.
Zhu Xian-hui, Yu Yue, Shi Nan, et al. Research on hierarchical optimization of BP neural network and its application in wind power prediction[J]. High Voltage Apparatus, 2022, 58(2): 158-163.
[6] Cuevas E, Zaldivar D, Pérez C M. A novel multi-threshold segmentation approach based on differential evolution optimization[J]. Expert Systems with Applications, 2010, 37(7): 5265-5271.
[7] Ayala H V H, Santos F M, Mariani V C, et al. Image thresholding segmentation based on a novel beta differential evolution approach[J]. Expert Systems with Applications, 2015, 42(4): 2136-2142.
[8] Liu L. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation[J]. Computers in Biology and Medicine, 2021, 138: 104910.
[9] Tarkhaneh O, Shen H. An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation[J]. Expert Systems with Applications, 2019,138: 112820.
[10] Xu L, Jia H, Lang C, et al. A novel method for multilevel color image segmentation based on dragonfly algorithm and differential evolution[J]. IEEE Access, 2019, 7: 19502-19538.
[11] Chen J. Multi-threshold image segmentation based on an improved differential evolution: case study of thyroid papillary carcinoma[J]. Biomedical Signal Processing and Control, 2023, 85: 104893.
[12] García S, Fernández A, Luengo J, et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power[J]. Information Sciences, 2010, 180(10): 2044-2064.
[13] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2021, 1(1): 3-18.
[14] Das A K, Pratihar D K. Solving engineering optimization problems using an improved real-coded genetic algorithm (IRGA) with directional mutation and crossover[J]. Soft Computing, 2021, 25(7): 5455-5481.
[15] Kennedy J, Eberhart R. Particle swarm optimization[C]∥ICNN'95-international conference on neural networks, Perth, Australia, 1995: 1942-1948.
[1] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[2] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[3] Ming-hui YAO,Wei-chao WANG,Qi-liang WU,Yan NIU. Passenger flow prediction of urban public transportation hubs based on real-time data features and XGBoost algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3302-3308.
[4] Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304.
[5] Yong-jie MA,Min CHEN. Dynamic multi⁃objective optimization algorithm based on Kalman filter prediction strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1442-1458.
[6] Zhou-zhou LIU,Qian-yun ZHANG,Xin-hua MA,Han PENG. Compressed sensing signal reconstruction based on optimized discrete differential evolution algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2246-2252.
[7] Bing-hai ZHOU,Qiong WU. Balancing and bi⁃objective optimization of robotic assemble lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 720-727.
[8] Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696.
[9] Lei JIANG,Ren-chu GUAN. Design of fuzzy comprehensive evaluation system for talent quality based on multi⁃objective evolutionary algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1856-1861.
[10] Bing-hai ZHOU,Zhao-xu HE. Dynamic material handling scheduling for mixed⁃model assembly lines based on line⁃integrated supermarkets [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1809-1817.
[11] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705-713.
[12] HU Guan-yu, QIAO Pei-li. High dimensional differential evolutionary algorithm based on cloud population for network security prediction [J]. 吉林大学学报(工学版), 2016, 46(2): 568-577.
[13] LI Gen,LI Wen-hui. Facial feature tracking based on mind evolutionary algorithm [J]. 吉林大学学报(工学版), 2015, 45(2): 606-612.
[14] LI Gen,LI Wen-hui. Face occlusion recognition based on MEBML [J]. 吉林大学学报(工学版), 2014, 44(5): 1410-1416.
[15] KONG Ying-xiu, ZHAO Ding-xuan, YANG Bin, LI Tian-yu, HAN Jing-yuan. Robust static output feedback control using PSO-DE algorithm and LMI [J]. 吉林大学学报(工学版), 2013, 43(05): 1375-1380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!