Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (10): 3221-3227.doi: 10.13229/j.cnki.jdxbgxb.20240875

Previous Articles    

Sshear performance of cold-formed thin-wall composite steel walls with different sections

Li-hong HAN(),Yong-guo LIU   

  1. School of Management and Engineering,Qingdao University of Technology,Qingdao 266520,China
  • Received:2024-08-05 Online:2025-10-01 Published:2026-02-03

Abstract:

In order to ensure that the structure has sufficient bearing capacity under horizontal forces such as wind loads and earthquakes, the shear performance of cold-formed thin-walled steel composite walls with different cross-sections is studied. Determine the basic parameters of materials for preparing cold-formed thin-walled steel composite walls, prepare three types of cold-formed thin-walled steel composite wall test samples: rectangular section, U-shaped section, and Z-section. Test the displacement and crack changes of each test sample under the loaded shear load, monitor the ultimate load and failure load of the test sample, verify the degradation changes of the bearing capacity of each test sample, and analyze the influence of screw spacing, steel thickness, and spacing on the shear resistance of the sample. The experimental results show that compared to the other two types of sections, the Z-shaped section cold-formed thin-walled steel composite wall has the smallest displacement change under load and shorter crack occurrence. When the screw spacing is 150 mm, the steel thickness is 50 mm, and the spacing is 60 mm, the shear performance of the composite wall is optimal.

Key words: cold-formed thin-wall steel, composite wall, shear performance, U-shaped section, Z-section, rectangular section

CLC Number: 

  • TU391

Table 1

Basic performance parameters of steel platematerials"

参 数数值
屈服应力/MPa322.27
弹性模量/GPa161.28
屈服应变/%0.19
破坏荷载/MPa283.56
断裂伸长率/%23.55

Table 2

Basic parameters of wall materials"

参 数刨花板参数硅酸钙板参数
剪切弹性模量/MPa1 459.831 448.72
抗压强度/MPa26.9416.12

Table 3

Steel performance parameters"

参数内容数值
规格/mm×mm×mm42×15×1.5
屈服强度/MPa330
抗拉强度/MPa440
厚度/mm15
断裂伸长率/%33.92

Fig.1

Layout of experimental apparatus"

Fig.2

Load displacement curves of composite wallswith different cross-sections under monotonicloading"

Table 4

Cracking situation of test samples under different loads"

开裂位置内容矩形试样U型试样Z型试样
试样底部开裂位移/mm37.2822.464.28
裂缝长度/mm18.6512.365.27
裂缝宽度/mm5.243.872.15
刚度特征值0.8460.9681.112
试样竖向开裂位移/mm35.9420.175.12
裂缝长度/mm22.6719.724.28
裂缝宽度/mm7.643.481.96
刚度特征值0.4850.6650.957
试样斜向开裂位移/mm34.7621.652.67
裂缝长度/mm36.2523.154.82
裂缝宽度/mm6.154.961.54
刚度特征值0.4970.5780.676

Table 5

Analysis of load displacement characteristics"

测试内容矩形试样U型试样Z型试样
屈服荷载/kN5.884.692.81
屈服位移/mm19.577.213.51
极限荷载/kN15.897.864.87
极限位移/mm40.8344.2821.92
破坏荷载/kN9.167.864.87
破坏位移/mm44.2841.9221.83
延性系数6.236.332.26
累计耗能能力/(kN·mm)1 5831 7691 002

Fig.3

Degradation analysis of bearing capacity undershear action"

Fig.4

Degradation analysis of bearing capacity under shear action"

Fig.5

Influence of steel thickness on composite walls"

Fig.6

Influence of column spacing on composite walls"

[1] 陈明, 王一凡. 冷弯薄壁型钢蒙古包风雪作用下仿真研究[J]. 计算机仿真, 2021, 38(1): 181-186.
Chen Ming, Wang Yi-fan. Stimulation study on the cold-formed thin-wall steel mongolian yurt under wind and snow loads[J]. Computer Simulation, 2021, 38(1): 181-186.
[2] 徐博文, 姜宝石. 带内置拉条的冷弯薄壁型钢和秸秆板组合墙体抗侧力性能研究[J]. 建筑钢结构进展,2022, 24(12): 92-102, 116.
Xu Bo-wen, Jiang Bao-shi. Research on the lateral force resistance of composite walls composed of cold-formed thin-walled steel members and straw board with built-in bracings[J]. Progress in Steel Building Structures, 2022, 24 (12): 92-102, 116.
[3] 彭志明, 陈忠范, 徐志峰, 等. 不同截面冷弯型钢-泡沫混凝土组合墙体抗震性能[J]. 东南大学学报:自然科学版, 2023, 53(5): 783-793.
Peng Zhi-ming Chen Zhong-fan, Xu Zhi-feng, et al. Seismic performance of cold-formed steel-foam concrete composite wall with different sections[J]. Journal of Southeast University(Natural Science Edition), 2023,53 (5): 783-793.
[4] 徐志峰, 陈海涛, 王来, 等. 装配式冷弯薄壁型钢-轻质混凝土组合剪力墙抗震性能研究[J]. 建筑结构学报, 2023, 44(12): 46-58.
Xu Zhi-feng, Chen Hai-tao, Wang Lai, et al. Study on seismic behavior of assembled lightweight concrete-filled cold-formed thin-walled steel composite shear walls[J]. Journal of Building Structures, 2023, 44(12): 46-58.
[5] 管宇,周绪红,石宇,等.冷弯薄壁型钢组合墙体简化计算模型研究[J].湖南大学学报:自然科学版,2023,50(1):59-68.
Guan Yu, Zhou Xu-hong, Shi Yu, et al. Simplified calculation model of cold-formed thin-walled steel composite wall[J]. Journal of Hunan University(Natural Sciences), 2023, 50(1): 59-68.
[6] 刘朋,钱哲,王连广,等.双片OSB覆面冷弯薄壁型钢墙体滞回性能研究[J].建筑钢结构进展,2022,24(3):72-79.
Liu Peng, Qian Zhe, Wang Lian-guang, et al. Research on the hysteretic behavior of double OSB sheathed cold-formed steel wall[J]. Progress in Steel Building Structures, 2022, 24(3): 72-79.
[7] Kumar P, Kumar A, Kumar S,et al.Bending behaviour of steel-concrete composite beam with partial shear interface using MCS and ANN[J]. Acta Mechanica, 2024, 235(7): 4451-4471.
[8] 李红现, 刘殿忠, 张振, 等. 轻钢-发泡聚苯乙烯轻质混凝土组合墙体力学性能试验研究[J]. 四川建筑科学研究, 2023, 49(6): 34-45.
Li Hong-xian, Liu Dian-zhong, Zhang Zhen, et al. Experimental study on mechanical properties of light steel-expanded polystyrene lightweight concrete composite wall[J]. Sichuan Building Science, 2023, 49(6): 34-45.
[9] 王威, 李昱, 权超超, 等. 竖波钢板组合剪力墙截面性能及曲率分析[J]. 工程力学, 2023, 40(7): 82-98.
Wang Wei, Li Yu, Quan Chao-chao, et al. Section performance and curvature analysis of vertical corrugated steel plate composite shear walls[J]. Engineering Mechanics, 2023, 40(7): 82-98.
[10] 侯皓文, 王伟, 陈越时. 双钢板混凝土组合剪力墙-钢梁单边螺栓端板连接节点抗震性能研究[J]. 工程力学, 2023, 40(): 259-268, 294.
Hou Hao-wen, Wang Wei, Chen Yue-shi. Seismic performance of endplate connections between steel beams and double-skincomposite walls with blind bolts[J]. Engineering Mechanics, 2023, 40(Sup.1): 259-268, 294.
[11] 庞瑞, 刘宇豪, 梁书亭, 等. 装配式钢-混凝土组合管剪力墙抗震性能试验与数值分析[J]. 东南大学学报:自然科学版, 2022, 52(3): 471-481.
Pang Rui, Liu Yu-hao, Liang Shu-ting, et al. Experiment and numerical analysis on seismic behavior of precast SRC composite tube shear walls[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(3): 471-481.
[12] 任重, 杨碧伟, 何文福, 等.考虑覆板承载的开孔冷弯薄壁型钢组合墙体压弯性能研究[J].工程抗震与加固改造, 2022, 44(3): 30-39, 29.
Ren Zhong, Yang Bi-wei, He Wen-fu, et al. Compression and bending performance of cold-formed thin-walled steel perforated stud walls considering the bearing capacity of sheathing[J]. Earthquake Resistant Engineering and Retrofitting, 2022,44(3): 30-39, 29.
[13] 褚云朋, 钟燕, 罗萍. 基于损伤的多层冷弯薄壁型钢结构房屋抗震性能及设计方法[J]. 工业建筑,2022, 52(4): 50-55, 90.
Chu Yun-peng, Zhong Yan, Luo Ping. Seismic performance and design method of multi story cold-formed thin-walled steel structure buildings based on damage[J]. Industrial Architecture, 2022, 52(4): 50-55, 90.
[14] 张国伟, 安佳宁, 高海智, 等. M型钢-混凝土组合剪力墙抗震性能有限元分析[J]. 建筑结构, 2023, 53(3): 21-26, 63.
Zhang Guo-wei, An Jia-ning, Gao Hai-zhi, et al. Finite element analysis on seismic performance of M-section steel-concrete composite shear wall[J]. Building Structure, 2023, 53(3): 21-26, 63.
[15] 张国伟,安佳宁,高海智,等.M型钢-混凝土组合剪力墙抗震性能有限元分析[J].建筑结构,2023,53(3):21-26, 63
Zhang Guo-wei, An Jia-ning, Gao Hai-zhi, et al. Finite element analysis on seismic performance of M-section steel-concrete composite shear wall[J].Building Structure,2023,53(3):21-26, 63.
[1] Wei-dong HAO,Jian-qi LI. Deformation characteristics of prestressed steel plate-brick masonry composite wall under support failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1356-1362.
[2] Hao JIANG,Zheng-wen ZHAO. Experiment on shear performance of RC beams strengthened with basalt fiber grid cement-based composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 211-220.
[3] ZHANG Jun-yuan, ZHANG Qiu-shi, LIU Wei-guo, ZHANG Le, WU Li-nan, ZHOU Hao. Crushing model of rectangular section thin-walled beam filled with aluminum foam [J]. 吉林大学学报(工学版), 2016, 46(3): 745-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!