Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (9): 3056-3068.doi: 10.13229/j.cnki.jdxbgxb.20250574

Previous Articles    

Data⁃driven distributed predictive control of vehicle platoons

Shu-you YU1(),Ze-peng LIU1,Bao-jun LIN1(),Hong CHEN1,2   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.College of Electronics and Information Engineering,Tongji University,Shanghai 200092,China
  • Received:2025-06-28 Online:2025-09-01 Published:2025-11-14
  • Contact: Bao-jun LIN E-mail:shuyou@jlu.edu.cn;linbj@jlu.edu.cn

Abstract:

An online data-driven predictive control method was proposed, which constructs an equivalent linear model of the controlled plant at each discrete time step of the closed-loop operation, and a recursive least squares algorithm with a dynamically adjusted forgetting factor based on parameter identification residuals was developed to estimate the model's time-varying parameters online. Furthermore, a distributed predictive control strategy was proposed based on a predecessor-leader-follower communication topology. The strategy decomposes the global optimization problem of the vehicle platoon into local subproblems for each follower vehicle, enabling parallel computation and improving solution efficiency. Co-simulation results using TruckSim and Matlab/Simulink demonstrate that the proposed data-driven model accurately captures vehicle dynamics across time-varying environments, and the designed distributed controller ensures effective longitudinal tracking and lateral lane-keeping performance of the platoon.

Key words: vehicle platoon, data-driven control, lane-keeping, distributed predictive control

CLC Number: 

  • TP273

Fig.1

Plane monorail model of front wheel steering vehicle"

Fig.2

Lane-keeping model"

Fig.3

Predecessor-Leader-Following topology"

Fig.4

Distributed adaptive predictive control block diagram"

Fig.5

Membership function"

Table 1

Parameters of the ith vehicle"

参数数值参数数值
mi/kg18 000Iiz/(kg·m2130 421.8
lf/m3.5lr/m1.5
Jif/(kg·m224Jir/(kg·m248
Re/m0.51ρ/(kg·m-31.225 8

Fig.6

Comparison of the output response between the equivalent linear model and TruckSim"

Table 2

Controller parameters"

参数RLS-DPCNMPC
Ts0.01 s0.01 s
Np77
预瞄距离5 m5 m
ddes11 m11 m
xn4
yn2
δi,min,δi,max-0.1,?0.1?rad-0.1,?0.1?rad
Ti,mind,Ti,maxd-1E4,?1E4?N?m-1E4,?1E4?N?m
ei,minp,?ei,maxp-5,?5?m-5,?5?m
ei,miny,?ei,maxy-0.5,?0.5?m-0.5,?0.5?m
ei,minφ,?ei,maxφ-0.15,?0.15?rad-0.15,?0.15?rad
Qdiag(2E6,1E7,3E2,3E2)diag(6E6,2E8,3E7,3E7)
Rdiag(4E1,3E1)diag(5E-3,1E8)

Fig.7

Road curvature"

Fig.8

Working condition 1, RLS-DPC"

Fig.9

Working condition 1, NMPC"

Table 3

Average computation time of the two algorithms"

算法跟随车1跟随车2跟随车3
RLS-DPC0.002 90.002 40.002 3
NMPC0.032 30.029 80.029 8

Fig.10

Working condition 2, RLS-DPC"

Fig.11

Working condition 2, NMPC"

[1] Chen T, Cai Y, Chen L, et al. Trajectory and velocity planning method of emergency rescue vehicle based on segmented three-dimensional quartic Bezier curve[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3461-3475.
[2] 张文会, 叶梅茹, 席聪, 等. 混合交通流环境下车辆编队与碳排放特性[J/OL]. [2025-09-04].
[3] Qiang Z, Dai L, Chen B, et al. Distributed model predictive control for heterogeneous vehicle platoon with inter-vehicular spacing constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3339-3351.
[4] Wang R, Li H, Liang B, et al. Policy learning for nonlinear model predictive control with application to USVs[J]. IEEE Transactions on Industrial Electronics, 2023, 71(4): 4089-4097.
[5] 冯阳阳. 智能网联环境下商用车队列分布式模型预测控制策略[D]. 长春:吉林大学控制科学与工程学院, 2024.
Feng Yang-yang. Distributed model predictive control of truck platoons under intelligent networked environment[D]. Changchun: College of Control Science and Engineering, Jilin University, 2024.
[6] 丁能根, 李丹华, 许景, 等. 基于局部线性化的汽车质心侧偏角估计[J].农业机械学报, 2012, 43(1): 6-11.
Ding Neng-gen, Li Dan-hua, Xu Jing, et al. Estimation of vehicle sideslip angle based on local linearization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 6-11.
[7] Quan S, Wang Y X, Xiao X, et al. Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells[J]. Applied Energy, 2021, 293: No. 116919.
[8] Vicente B A H, James S S, Anderson S R. Linear system identification versus physical modeling of lateral-longitudinal vehicle dynamics[J]. IEEE Transactions on Control Systems Technology, 2020, 29(3): 1380-1387.
[9] Aswani A, Gonzalez H, Sastry S S, et al. Provably safe and robust learning-based model predictive control[J]. Automatica, 2013, 49(5): 1216-1226.
[10] Zhan J, Ma Z, Zhang L. Data-driven modeling and distributed predictive control of mixed vehicle platoons[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 572-582.
[11] Spielberg N A, Brown M, Kapania N R, et al. Neural network vehicle models for high-performance automated driving[J]. Science Robotics, 2019, 4(28):No. eaaw1975.
[12] 耿科. 基于数据驱动的智能车辆非线性车辆动力学建模方法研究[D]. 北京: 北京交通大学电子信息工程学院, 2023.
Geng Ke. A data-driven approach to modeling nonlinear vehicle dynamics for intelligent vehicles[D]. Beijing: School of Electronic and Information Engineering, Beijing Jiaotong University, 2023.
[13] Breschi V, Sassella A, Formentin S. On the design of regularized explicit predictive controllers from input-output data[J]. IEEE Transactions on Automatic Control, 2022, 68(8): 4977-4983.
[14] Coulson J, Lygeros J, Dörfler F. Data-enabled predictive control: in the shallows of the DeePC[C]∥ 18th European Control Conference (ECC), Naples, Italy, 2019: 307-312.
[15] Xiao Y, Zhang X, Xu X, et al. Deep neural networks with Koopman operators for modeling and control of autonomous vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 135-146.
[16] Rajamani R. Vehicle Dynamics and Control[M].Heidelberg: Springer Science & Business Media, 2011.
[17] Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems[J]. Automatica, 2005, 41(2): 315-325.
[18] Swaroop D, Hedrick J K. Constant spacing strategies for platooning in automated highway systems[J]. Journal of Dynamic Systems, Measurement, and Control,1999,121(3):462-470.
[19] Deng C Y. A generalization of the Sherman-Morrison-Woodbury formula[J]. Applied Mathematics Letters, 2011, 24(9): 1561-1564.
[20] Fortescue T R, Kershenbaum L S, Ydstie B E. Implementation of self-tuning regulators with variable forgetting factors[J]. Automatica, 1981, 17(6): 831-835.
[21] Kim M, Kim K, Han S. Reliable online parameter identification of li-ion batteries in battery management systems using the condition number of the error covariance matrix[J]. IEEE Access, 2020, 8: 189106-189114.
[22] Zhu S, He Y. Articulated heavy vehicle lateral dynamic analysis using an automated frequency response measuring technique[J]. International Journal of Vehicle Performance, 2015, 2(1): 30-57.
[23] 李文博, 谢华城, 于树友, 等. 基于分布式模型预测的商用车队列避障控制[J/OL]. [2025-09-04].
[24] Hichri Y, Cerezo V, Do M T. Friction on road surfaces contaminated by fine particles: some new experimental evidences[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(9): 1209-1225.
[1] Shu-you YU,Hua-cheng XIE,Wen-bo LI,Yong-fu LI,Hong CHEN,Bao-jun LIN. Digital twin driven longitudinal and lateral control of truck platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1994-2002.
[2] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!