Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1994-2002.doi: 10.13229/j.cnki.jdxbgxb.20231367

Previous Articles     Next Articles

Digital twin driven longitudinal and lateral control of truck platoon

Shu-you YU1(),Hua-cheng XIE1,Wen-bo LI1,Yong-fu LI2,Hong CHEN1,3,Bao-jun LIN1()   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Intelligent Air-Ground Cooperative Control,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    3.College of Electronics and Information Engineering,Tongji University,Shanghai 200092,China
  • Received:2023-12-08 Online:2025-06-01 Published:2025-07-23
  • Contact: Bao-jun LIN E-mail:shuyou@jlu.edu.cn;linbj@jlu.edu.cn

Abstract:

A vehicle platoon cooperative control system based on digital twin was proposed, considering the longitudinal and lateral motion. The proportional-integral-derivative (PID) control was designed to ensure stable driving of the convoy. The linear quadratic regulator (LQR) control was designed to ensure the lateral lane tracking performance. A digital twin simulation scenario was build using Prescan, TruckSim, and Matlab/Simulink, and the longitudinal following and lateral lane tracking performance of vehicle queues was dynamically simulated based on longitudinal and lateral control. The digital twin comprehensively debugs and optimizes the control strategy and parameters by remotely controlling the vehicle platoon and monitoring indicators such as longitudinal and lateral velocity, lateral position and yaw angle deviation of the platoon. The simulation results show that the digital twin driven truck platoon control system has good tracking performance and lane-keeping performance.

Key words: automatic control technology, digital twin, vehicle platoon, lane-keeping, longitudinal and lateral control

CLC Number: 

  • TP273

Fig.1

Digital twin architecture"

Fig.2

Vehicle yaw dynamic model"

Fig.3

Structure of lane-keeping model"

Fig.4

Lateral controller structure"

Table 1

Parameters of trucks"

参数数值
mi/kg18 000
Iiz/(kg?m2)130 421.8
lf,i/m3.5
lr,i/m1.5
τi/s0.25
Cicf/(N·rad-1)5.422 5×105
Cicr/(N·rad-1)1.066 3×105

Table 2

Parameters of the longitudinal and lateral controller"

参数数值
kx8.1
kv0.9
d0/m9.5
h/s0.6
L/m5
Qihdiag(1?000,100,1000,100)
Rih1 000

Fig.5

“Nanling Campus of Jilin University” Prescan simulation scene"

Fig.6

Trajectory of trucks"

Fig.7

Road curvature"

Fig.8

Longitudinal velocity"

Fig.9

Front wheel slip angle"

Fig.10

Yaw angle offset"

Fig.11

Lateral position offset"

Fig.12

“Expressway” Prescan simulation scene"

Fig.13

Trajectory of trucks"

Fig.14

Road curvature"

Fig.15

Longitudinal velocity"

Fig.16

Front wheel slip angle"

Fig.17

Yaw angle offset"

Fig.18

Lateral position offset"

[1] Feng S, Zhang Y, Li S E, et al. String stability for vehicular platoon control: definitions and analysis methods[J]. Annual Reviews in Control, 2019, 47: 81-97.
[2] Jia D, Ngoduy D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 245-264.
[3] Liang K Y, Mårtensson J, Johansson K H. Heavy-duty vehicle platoon formation for fuel efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1051-1061.
[4] 林珲, 徐丙立, 肖昕, 等.数字孪生人文地理环境[J].遥感学报, 2024, 28(5): 1131-1144.
Lin Hui, Xu Bing-li, Xiao Xin,et al. Digital twin human geographic environment[J]. National Remote Sensing Bulletin, 2024,28(5): 1131-1144.
[5] Dasgupta S, Rahman M, Lidbe A D, et al. A transportation digital-twin approach for adaptive traffic control systems[J/OL].[2023-11-01].
[6] Jones D, Snider C, Nassehi A, et al. Characterising the digital twin: a systematic literature review[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29: 36-52.
[7] Yang C, Dong J, Xu Q, et al. Multi-vehicle experiment platform: a digital twin realization method[C]∥2022 IEEE/SICE International Symposium on System Integration (SII), Narvik, Norway,2022: 705-711.
[8] Zhang T, Liu X, Luo Z, et al. Time series behavior modeling with digital twin for Internet of vehicles[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 1-11.
[9] Ding C, Ho I W H. Digital-twin-enabled city-model-aware deep learning for dynamic channel estimation in urban vehicular environments[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1604-1612.
[10] Yang X, Zheng J, Luan T H, et al. Data synchronization for vehicular digital twin network[C]∥GLOBECOM 2022-2022 IEEE Global Communications Conference,Rio de Janeiro, Brazil, 2022: 5795-5800.
[11] Du H, Leng S, He J, et al. Digital twin based trajectory prediction for platoons of connected intelligent vehicles[C]∥2021 IEEE 29th International Conference on Network Protocols (ICNP), Dallas, TX, USA, 2021: 1-6.
[12] Venkatesan S, Manickavasagam K, Tengenkai N, et al. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin[J]. IET Electric Power Applications, 2019, 13(9): 1328-1335.
[13] Rajamani R, Tan H S, Law B K, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 695-708.
[14] Zheng Y, Li S E, Wang J, et al. Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(1): 14-26.
[15] Xiao L, Gao F. Practical string stability of platoon of adaptive cruise control vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1184-1194.
[16] Kianfar R, Ali M, Falcone P, et al. Combined longitudinal and lateral control design for string stable vehicle platooning within a designated lane[C]∥17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014: 1003-1008.
[17] Falcone P, Tufo M, Borrelli F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems[C]∥2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007: 2980-2985.
[18] Wei S, Zou Y, Zhang X, et al. An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1116-1127.
[19] Naus G, Vugts R, Ploeg J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279.
[20] Li W, Todorov E. Iterative linear quadratic regulator design for nonlinear biological movement systems[C]∥First International Conference on Informatics in Control, Automation and Robotics, Setúbal, Portugal, 2004, 222-229.
[21] Rajamani R. Vehicle Dynamics and Control[M]. New York: Springer Science & Business Media, 2011.
[1] Yan-tao TIAN,Wen-yan YU,Yan-shi JI,bo XIE. Shared controller design for different driving behavior models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2676-2686.
[2] Jing-hua ZHAO,Yu-tong ZHANG,Pai CAO,Zhong-shu WANG,Xiao-ping LI,Ya-nan SUN,Fang-xi XIE. Optimal energy management on extended⁃range electric vehicle equipped with compressed natural gas engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 600-609.
[3] Wen-hang LI,Tao NI,Ding-xuan ZHAO,Ying-jie DENG,Xiao-bo SHI. Control method on hydraulic suspension systems of rescue vehicles based on model predictive feedback technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 610-619.
[4] Jing-hua ZHAO,Shi-hao DU,Liang-wei LIU,Yun-feng HU,Yao SUN,Fang-xi XIE. Parameter identification for SCR systems based on improved chaos optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 550-557.
[5] Guo LIU,Jian XIONG,Xiu-jian YANG,Yang-fan HE. Intelligent vehicle trajectory tracking control based on curvature augmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3717-3728.
[6] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[7] Shou-rui WANG,Wu-yin JIN,Zhi-yuan RUI,Xia ZHANG. Payload swing control for 3D overhead crane based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3508-3517.
[8] Yao SUN,Yun-feng HU,Jie-min ZHOU,Huan CHENG,Ting QU,Jing-hua ZHAO,Hong CHEN. Moving horizon optimization control of SCR system based on hierarchical controller [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 61-71.
[9] Wei-chao ZHUANG,Hao-nan Ding,Hao-xuan DONG,Guo-dong YIN,Xi WANG,Chao-bin ZHOU,Li-wei XU. Learning based eco⁃driving strategy of connected electric vehicle at signalized intersection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 82-93.
[10] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[11] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[12] Ang LI,Hong-yuan YANG,Xiao-meng LEI,Kai-wen SONG,Cheng-hui QIAN. Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1696-1708.
[13] Lin SONG,Li-ping WANG,Jun WU,Li-wen GUAN,Zhi-gui LIU. Reliability analysis based on cyber⁃physical system and digital twin [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 439-449.
[14] Hang ZHU,Han-bo YU,Jia-hui LIANG,Hong-ze LI. Improved algorithm of UAV search based on electric field model and simulation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3029-3038.
[15] Bin XIAN,Shi-jing ZHANG,Xiao-wei HAN,Jia-ming CAI,Ling WANG. Trajectory planning for unmanned aerial vehicle slung⁃payload aerial transportation system based on reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2259-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Guang-da,Deng Guang-fu . Synchronization control for row and column movement
on laser imaging instruments
[J]. 吉林大学学报(工学版), 2006, 36(05): 736 -0739 .
[2] Du Zhongze, Huang Junxia, Fu Hanguang, Wang Jingtao, Zhao Xicheng. Microstructure and mechanical property of 65Mn steel after severe plastic deformation[J]. 吉林大学学报(工学版), 2006, 36(02): 143 -0147 .
[3] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1317 -1322 .
[4] Zhang Hui,Li Jun,Wang Li-jun,Jia Qiong,Wu Jie,Gong Bao-li . Measurement of formaldehyde emission from an engine fuelled by gasolinemethanol blends[J]. 吉林大学学报(工学版), 2008, 38(01): 32 -036 .
[5] Yang Xin, Tong Jin, Zhang Fu, Zhang Shu-jun . Application of selfadaptive virtual design to runflat tire insertion[J]. 吉林大学学报(工学版), 2006, 36(05): 705 -0709 .
[6] Hong Zheng;Wu Li-fa;Wang Yuan-yuan . Three worm propagation models to establish scalefree worm networks[J]. 吉林大学学报(工学版), 2008, 38(03): 690 -0694 .
[7] Wan Peng,Sun Yu,Sun Yong-hai . Recognition method of rice kernel shape based on computer vision[J]. 吉林大学学报(工学版), 2008, 38(02): 489 -0492 .
[8] LIU Jinshan, HUANG Weijun, GUO Yingnan, TAN Manzhi, YANG Liping. Experimental Study on Homogeneous Charge Compression Ignition Engine Fueled with Ethanol[J]. 吉林大学学报(工学版), 2005, 35(06): 596 -0600 .
[9] . [J]. 吉林大学学报(工学版), 2005, 35(03): 263 -266 .
[10] Yuan Tao,Zhang Yi-min,Xue Yu-chun,He Xiang-dong . Reliability sensitivity to the correlation coefficients among random variables[J]. 吉林大学学报(工学版), 2007, 37(05): 1116 -1120 .