吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1076-1080.doi: 10.13229/j.cnki.jdxbgxb201404027

Previous Articles     Next Articles

Vision inspection technology of fracture splitting notch of auto connecting rod

LIU Chang-ying1, CAI Wen-jing1, WANG Tian-hao2, LI Ji-zhi1, JIA Yan-mei1, SONG Yu-he1   

  1. 1.College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2013-01-19 Online:2014-07-01 Published:2014-07-01

Abstract: In traditional manual detection of fracture splitting notch of auto connecting rod, the workload is heavy, the efficiency is low and the detecting error is big. To overcome these shortcomings, an improved machine vision inspection method is proposed. This method uses a CCD camera to obtain detection image, and filters out the background noise by homomorphic filtering technique to improve the quality of the detected images. It uses the self-adaptive threshold Canny edge detection method to extract the edge information. The target feature is recognized and judged by measuring its circularity and oblateness. The proposed method is verified by auto connecting rod detection experiment. Results show that using the proposed method can realize quick and accurate detection of auto connecting rod.

Key words: automatic technology, auto connecting rod, machine vision, homomorphic filtering, edge operator

CLC Number: 

  • TP247.5
[1] 寇淑清, 王金伟, 郑祺峰, 等. 曲轴轴承座/连杆激光加工裂解槽的组织与胀断性能[J].光学精密工程, 2011, 19(4):768-774. Kou Shu-qing, Wang Jin-wei, Zheng Qi-feng, et al. Organization and expansion breaking performance of fracture notch of crankshaft breaking and connecting rod by laser processing[J].Optics and Precision Engineering, 2011, 19(4):768-774.
[2] Tian Yuan-yuan, Liu Si-yang, Tan Qing-chang. Application of detecting part's size online based on machine vision[J]. Energy Procedia, 2012, 16: 1948-1956.
[3] 李喆, 费敏锐, 周文举. 基于机器视觉的瓶盖表面检测技术的研究[J].仪表技术, 2012(9):31-34. Li Zhe, Fei Min-rui, Zhou Wen-ju. Reserch of cap surface inspection technology based on machine vision[J]. Instrumentation Technology, 2012(9): 31-34.
[4] Urbanek J, Barszcz T, Uhl T, et al. Leak detection in gas pipelines using wavelet-based filtering[J]. Structural Health Monitoring, 2012, 11:405-412.
[5] Yang W D, Guo W, Peng K, et al. Research on removing shadow in workpiece image based on homomorphic filtering[J]. Procedia Engineering, 2012, 29:2360-2394.
[6] 王宣银, 梁冬泰. 基于多元图像分析的表面缺陷检测算法[J].浙江大学学报:工学版, 2010, 44(3): 448-452. Wang Xuan-yin, Liang Dong-tai. Surface defect detection based on multivariate image analysis[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(3):448-452.
[7] Zhao X M, Wang W X, Wang L P. Parameter optimal determination for Canny edge detection[J]. Imaging Science Journal, 2011, 59(6):332-341.
[8] 唐路路, 张启灿, 胡松. 一种自适应阈值的Canny边缘检测算法[J]. 光电工程, 2011(5):127-132. Tang Lu-lu, Zhang Qi-can, Hu Song. An improved algorithm for Canny edge detection with adaptive threshold[J]. Opto-Electronic Engineerig, 2011(5):127-132.
[9] Han Ping, Wu Jing-xian, Wu Ren-biao. SAR target feature extraction and recognition based on 2D-DLPP[J]. Physics Procedia, 2012, 24:1431-1436.
[1] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[2] LIN Jin-hua, WANG Yan-jie, WANG Lu, YAO Yu. Real-time surface reconstruction based global camera pose optimization [J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[3] ZHANG Fei, SHAN Zhong-de, REN Yong-xin, NIE Jun-gang, LIU Feng. Calibration of line array camera for head defect detection system on cylinder cover [J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[4] ZHOU Xiao-dong, ZHANG Ya-chao, TAN Qing-chang, ZHANG Wei-jun. New method of cylindricity measurement based on structured light vision technology [J]. 吉林大学学报(工学版), 2017, 47(2): 524-529.
[5] ZHANG Bo, WANG Wen-jun, WEE Minkooc, CHENG Bo. Detection handheld phone use by driver based on machine vision [J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[6] HAN Kyong-won, TIAN Yan-tao, KONG Yong-su, ZHANG Ying-hui, LI Jin-song. Adaptive decoupled sliding mode control for the ball and plate system [J]. 吉林大学学报(工学版), 2014, 44(3): 718-725.
[7] WAN Chuan, TIAN Yan-tao, LIU Shuai-shi, CHEN Hong-wei. Face tracking and facial expression recognition system based on active machine vision [J]. 吉林大学学报(工学版), 2013, 43(02): 459-465.
[8] ZHAO Ding-Xuan, CUI Yu-Xin, GONG Jie, NI Tao, HOU Jing-Wei, ZHAO Ying, WANG Chao-Fei. Method of tracking and measuring moving object based on machine vision [J]. 吉林大学学报(工学版), 2010, 40(增刊): 257-0261.
[9] MENG Xiang-Yan, SUN Yong-Hai, WANG Xiao-Dan, LI Zhi, HU Tie-Jun, HE Bing. Methods of extraction and analysis of grading features of ribeye section of beef carcass [J]. 吉林大学学报(工学版), 2010, 40(02): 485-0490.
[10] YIN Yong-guang,DING Yun. Rapid method for enumeration of Escherichia coli in food based on computer vision [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 344-0348.
[11] WANG Hong-Rui, TIAN Yan-Chao, GU Qing. Adaptive tuning methods for digital camera parameters under variou illuminations [J]. 吉林大学学报(工学版), 2009, 39(05): 1262-1267.
[12] ZHENG Rui-rui,ZHAO Ji-yin,WANG Zhi-nan,WU Bao-chun . Power transformer fault diagnosis based on improved gray clustering analysis [J]. 吉林大学学报(工学版), 2008, 38(05): 1237-1241.
[13] LI Wei,KANG Qing-qing, ZHANG Jun-xiong, XUN Yi . Detecting technique for surface texture on apples based on machine vision [J]. 吉林大学学报(工学版), 2008, 38(05): 1110-1113.
[14] Chen Zong-hai,Zhu Ming-qing,Zhang Chen-bin,Li Ming . Optimal preparation of quantum state of quantumbit system taking magnetic field as controlling field
[J]. 吉林大学学报(工学版), 2007, 37(03): 660-0666.
[15] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision [J]. 吉林大学学报(工学版), 2006, 36(04): 534-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!