吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 172-178.doi: 10.13229/j.cnki.jdxbgxb201601026

Previous Articles     Next Articles

Terra-mechanics characters and development of Martian simulant regolith

LI Jian-qiao1, XUE Long1, 2, ZOU Meng1, ZONG Wei3, XIAO Jie3   

  1. 1.Key Laboratory of Bionic Engineering of Education Ministry, Jilin University, Changchun 130022, China;
    2.School of Mechatronics and Engineering, East China Jiaotong University, Nanchang 330045, China;
    3. Aerospace System Engineering Shanghai, Shanghai 201108, China
  • Received:2015-01-03 Online:2016-01-30 Published:2016-01-30

Abstract: The surface feature of Mars, the chemical components, mechanical properties, grain sizes and their distribution of Martian regolith are introduced based the success of rover missions on Mars. The mechanical properties of some simulant Martian regolith used in the world are compared and analyzed. Then, three grain size distributions of simulant Martian regolith are proposed and the terra-mechanics characters, such as cohesion and internal friction angle, are measured. Results show that the cohesion ranges from 0 to 0.316 kPa and the internal friction angle ranges from 38.4° to 46.1°.

Key words: Mars, martian regolith, volcano ash, Martian simulant regolith, terra-mechanics characters

CLC Number: 

  • TU411
[1] Bell J F, McSween H Y, Crisp J A,et al. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder[J]. Journal of Geophysical Research: Planets. 2000, 105(E1):1721-1755.
[2] Herkenhoff K E, Squyres S W, Arvidson R,et al. Textures of the soils and rocks at gusev crater from spirit's microscopic imager[J]. Science,2004, 305(5685):824-826.
[3] Shaw A, Wolff M J, Seelos F P,et al. Surface scattering properties at the opportunity Mars rover's traverse region measured by CRISM[J]. Journal of Geophysical Research: Planets,2013,118(8):1699-1717.
[4] Arvidson R E, Anderson R C, Bartlett P,et al. Localization and physical property experiments conducted by opportunity at meridiani planum[J]. Science,2004, 306(5702):1730-1733.
[5] Blake D F, Morris R V, Kocurek G,et al. Curiosity at gale crater, Mars: characterization and analysis of the rocknest sand shadow[J]. Science,2013, 341(6153):1-7.
[6] Shaw A, Arvidson R E, Bonitz R,et al. Phoenix soil physical properties investigation[J]. Journal of Geophysical Research: Planets,2009,114(E1):1-19.
[7] Moore H J, Bickler D B, Crisp J A,et al.Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research: Planets,1999,104(E4):8729-8746.
[8] Golombek M P, Haldemann A F C, Simpson R A,et al.Martian Surface Properties from Joint Analysis of Orbital, Earth-based, and Surface Observations The Martian Surface[M]. London:Cambridge University Press,2008.
[9] Sullivan R, Anderson R, Biesiadecki J,et al. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs[J]. Journal of Geophysical Research: Planets,2011,116(E2):E02006.
[10] Herkenhoff K E, Golombek M P, Guinness E A,et al.In Situ Observations of the Physical Properties of the Martian Surface The Martian Surface[M]. London:Cambridge University Press,2008.
[11] Bish D L, Blake D F, Vaniman D T,et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater[J]. Science,2013, 341(6153):1-5.
[12] Marlow J J, Martins Z, Sephton M A. Mars on Earth: Soil analogues for future Mars missions[J]. Astronomy and Geophysics,2008, 49(2):220-223.
[13] Allen C C, Morris R V, Jager K M,et al. Martian regolith simulant JSC Mars-1[J]. Lunar and Planetary Science XXIX,1998:1690-1691.
[14] Pollack J B, Ockert-Bell M E, Shepard M K. Viking lander image analysis of Martian atmospheric dust[J]. Journal of Geophysical Research: Planets,1995, 100(E3):5235-5250.
[15] Scott G P, Saaj C M. The development of a soil trafficability model for legged vehicles on granular soils[J]. Journal of Terramechanics,2012, 49(3-4):133-146.
[16] Gregory S, Chakravarthini S. Measuring and simulating the effect of variations in soil properties on microrover trafficability[C]∥AIAA SPACE 2009 Conference & Exposition,USA:American Institute of Aeronautics and Astronautics,2009:1-10.
[17] Peters G H, Abbey W, Bearman G H,et al. Mojave Mars simulant Characterization of a new geologic Mars analog[J]. Icarus,2008, 197(2):470-479.
[18] Seiferlin K, Ehrenfreund P, Garry J,et al. Simulating Martian regolith in the laboratory[J]. Planetary and Space Science, 2008, 56(15):2009-2025.
[19] Costes N C, Cohron G T, Moss D C. Cone penetration resistance test—an approach to evaluating in-place strength and packing characteristics of lunar soils[J]. Proceedings of the Lunar Science Conference,1973,2:1973-1987.
[20] Arvidson R E, Bell J F, Bellutta P,et al.Spirit mars rover mission: Overview and selected results from the northern home plate winter haven to the side of scamander crater[J]. Journal of Geophysical Research: Planets,2010,115(E7):E00F03.
[21] Siebach K, Arvidson R, Cabrol N,et al. Recent spirit results: Microscopic imager analysis of particle properties in scamander crater, west of home plate[C]∥41st Lunar and Planetary Science Conference,Texas,2010:2548.
[22] 邹猛, 李建桥, 贾阳,等. 月壤静力学特性的离散元模拟[J]. 吉林大学学报:工学版,2008, 38(2):383-387.
Zou Meng,Li Jian-qiao,Jia Yang,et al. Statics characteristics of lunar soil by DEM simulation[J]. Journal of Jilin University(Engineering and Technology Edition),2008, 38(2):383-387.
[23] 邹猛, 李建桥, 张金换,等. 月球车驱动轮在不同介质上的牵引性能[J]. 吉林大学学报:工学版,2010, 40(1):25-29.
Zou Meng,Li Jian-qiao,Zhang Jin-huan,et al. Traction ability of lunar rover's driving wheel on different soils[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(1):25-29.
[24] 蒋明镜, 李立青, 刘芳,等. 含水率和颗粒级配对TJ-1模拟月壤力学性能影响的试验研究[J]. 岩土力学,2011, 32(07):1921-1925.
Jiang Ming-jing,Li Li-qing,Liu Fang,et al. Effects of moisture content and gradation on mechanical properties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2011, 32(07):1921-1925.
[1] WU Kai-jun, WANG Chun-li, SHAN Ya-zhou, DU San-shan, LU Huai-wei. Chemical synapse coupling synchronization of Hindmarsh-Rose neurons under Gauss white noise [J]. 吉林大学学报(工学版), 2017, 47(5): 1554-1560.
[2] JIA Qiu-ju, CHEN Zeng-qiang. Global exponentially synchronization of Hindmarsh-Rose neuron model [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 235-239.
[3] LU Xue-yuan, SUN Li-jun. Factors affecting splitting strength for AC-13 modified asphalt mixture and Marshall performance standard correlation [J]. 吉林大学学报(工学版), 2010, 40(03): 676-0682.
[4] WANG Hai, TIAN Yan-tao, CUI Mao-yuan, SHI Zhi-jun. Behavior-based Distributed Multi-agent System [J]. 吉林大学学报(工学版), 2002, (1): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!