Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 963-971.doi: 10.13229/j.cnki.jdxbgxb20171135

Previous Articles     Next Articles

Optimal algorithm of searching route for large amphibious aircraft

Yi YANG1(),Si⁃cai WANG2,Ying NAN1()   

  1. 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. China Aviation Industry General Aircraft Co. , Ltd. , Zhuhai 519000, China
  • Received:2017-11-22 Online:2019-05-01 Published:2019-07-12
  • Contact: Ying NAN E-mail:nuaa_yang@nuaa.edu.cn;nanying@nuaa.edu.cn

Abstract:

To enhance the search and rescue capacity, this paper represents an optimal algorithm of searching route for large amphibious aircraft to complete its search tasks within minimum time based on the flight characteristics of aircraft. The search route planning problem is transformed into a discrete programming problem considering the indexes of both missing search rate and duplicate search rate. The optimal route planning algorithm applied the route backdate indexes to satisfy the duplicate search rate. Meanwhile, the planned routes satisfy all constraints, such as the maximum overload, no?flying zone and so on. The numerical simulation results indicate that the performance indexes of the optimal routes calculated by the optimal route planning algorithm are better than the ones obtained by the traditional search route planning methods.

Key words: navigation guidance and control, navigation technology, route planning, improved dynamic programming, high?seas search and rescue, large amphibious aircraft

CLC Number: 

  • V249

Fig.1

Search zone while aircraft fly pass grids"

Fig.2

Schematic diagram of mesh connected domain"

Fig.3

Schematic diagram of no?flying zone"

Fig.4

Schematic diagram of search zone of aircraft"

Fig.5

Missing search zone and duplicate search zone of aircraft with turning flight in no?flying zone"

Fig.6

Schematic diagram of duplicate search zoneof aircraft in no?flying zone"

Fig.7

Schematic diagram of grid selection of route planning algorithm"

Fig.8

Comparison between routes calculated by traditional and improved dynamic programming"

Fig.9

Optimal planned search route on sea"

Fig.10

Search route on sea"

Table 1

Parameters of different route planning methods"

参数 方形航路 梯形航路 最优航路
飞行时间/s 30871.5 31324.5 30264.6
航路总长/106 m 3.5491 3.7015 3.475
漏搜率/% 0.36 0.38 0.42
复搜率/% 6.73 5.48 5.54
综合性能指标 1.8599 1.9246 1.8139

Fig.11

Tracking trajectory of optimal route"

Fig.12

Tracking guidance command acceleration"

Fig.13

Control rudder deflection angle"

1 厉骏, 蔡志勇, 谢辉 . 大型水陆两栖飞机海上搜索水平导航需求的设计[J]. 科技展望, 2014(14): 24⁃25.
Li Jun , Cai Zhi⁃yong , Xie Hui . Design of maritime search horizontal navigation requirements for large amphibious aircraft[J]. Science and Technology, 2014(14):24⁃25.
2 Galceran E , Carreras M . A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12): 1258⁃1276.
3 Oksanen T , Visala A . Coverage path planning algorithms for agricultural field machines[J]. Journal of Field Robotics, 2009, 26 (8): 651⁃668.
4 Acar E U , Choset H , Rizzi A A . Morse decompositions for coverage tasks[J]. International Journal of Robotics Research, 2002, 21(4): 331⁃334.
5 Shivashankar V , Jain R , Kuter U , et al . Real⁃time planning for covering an initially⁃unknown spatial environment[C]∥Proceedings of the TwentyFourth International Florida Artificial Intelligence Research Society Conference,Palm Beach, Florida, USA, 2011.
6 Lee T , Baek S , Choi Y . Smooth coverage path planning and control of mobile robots based on high⁃resolution grid map representation[J]. Robotics and Autonomous Systems, 2011, 59(10): 801⁃812.
7 Luo C , Yang S . A bioinspired neural network for real⁃time concurrent map building and complete coverage robot navigation in unknown environments[J]. IEEE Transactions on Neural Networks, 2008, 19 (7): 1279⁃1298.
8 Schafle T R , Mohamed S , Uchiyama N , et al . Coverage path planning for mobile robots using genetic algorithm with energy optimization[C]∥2016 International Electronics Symposium (IES), Bali, Indonesia, 2016: 99⁃104.
9 严浙平, 何靓文, 李娟 . 多域限界内多 AUV 巡逻航路规划方法[J]. 水下无人系统学报, 2017, 25(3): 237⁃242.
Yan Zhe⁃ping , He Jing⁃wen , Li Juan . Path planning method for multi⁃AUVs patrol in restricted multizone area[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 237⁃242.
10 艾兵, 杨睿 . 直升机海上搜索航路辅助规划算法[J]. 电光与控制, 2007, 15(7): 1⁃5.
Ai Bing , Yang Rui . The algorithm of helicopter maritime search auxiliary route⁃planning[J]. Electronics Optics & Control, 2007, 15(7): 1⁃5.
11 李沛, 段海滨 . 基于改进万有引力搜索算法的无人机航路规划[J]. 中国科学:技术科学, 2012, 42(10): 1130⁃1136.
Li Pei , Duan Hai⁃bin . Path planning of unmanned aerial vehicle based on improved gravitational search algorithm[J]. Science China Technological Sciences, 2012, 42(10): 1130⁃1136.
12 陈谋, 肖健, 姜长生 . 基于改进蚁群算法的无人机三维航路规划[J]. 吉林大学学报:工学版, 2008, 38(4): 991⁃995.
Chen Mou , Xiao Jian , Jiang Chang⁃sheng . Three⁃ dimensional path planning of UAV with improved ant algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(4): 991⁃995.
13 马向玲, 陈旭, 雷宇曜 . 基于数据链的无人机航路规划A*算法研究[J]. 电光与控制, 2009, 16(12): 15⁃17, 21.
Ma Xiang⁃ling , Chen Xu , Lei Yu⁃yao . The data link based A* algorithm used for UCAV path planning[J]. Electronics Optics&Control, 2009,16(12): 15⁃17,21.
14 梁宵, 王宏伦, 孟光磊, 等 . 三维真实地形环境下无人机救援航路规划方法[J]. 北京航空航天大学学报, 2015, 41(7): 1183⁃1187.
Liang Xiao , Wang Hong⁃lun , Meng Guang⁃lei , et al . Path planning for UAV under three⁃dimensional real terrain in rescue mission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1183⁃1187.
15 梁宵, 王宏伦, 李大伟, 等 . 基于流水避石原理的无人机三维航路规划方法[J]. 航空学报, 2013, 34(7): 1670⁃1681.
Liang Xiao , Wang Hong⁃lun , Li Da⁃wei , et al . Three⁃dimensional path planning for unmanned aerial vehicles based on principles of stream avoiding obstacles[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34(7): 1670⁃1681.
16 魏瑞轩, 许卓凡, 王树磊, 等 . 基于Laguerre图的自优化A⁃Star无人机航路规划算法[J]. 系统工程与电子技术, 2015, 37(3): 577⁃582.
Wei Rui⁃xuan , Xu Zhuo⁃fan , Wang Shu⁃lei , et al . Self⁃optimization A⁃Star algorithm for UAV path planning based on Laguerre diagram[J]. Systems Engineering and Electronics, 2015, 37(3): 577⁃582.
17 刘重, 高晓光, 符小卫, 等 . 基于反步法和非线性动态逆的无人机三维航路跟踪制导控制[J]. 兵工学报, 2014, 35(12): 2030⁃2040.
Liu Zhong , Gao Xiao⁃guang , Fu Xiao⁃wei , et al . Three⁃dimensional path tracking guidance and control for unmanned aerial vehicle based on back⁃stepping and nonlinear dynamic inversion[J]. Acta Armamentarii, 2014, 35(12): 2030⁃2040.
[1] PAN Hai-yang, LIU Shun-an, YAO Yong-ming. Depth information-basd autonomous aerial refueling [J]. 吉林大学学报(工学版), 2014, 44(6): 1750-1756.
[2] GUO Li-dong,TAN Zhen-fan,WEI Yan-hui. Compoundaxis macromicro control and modeling of laser weapon tracking system [J]. 吉林大学学报(工学版), 2011, 41(03): 859-864.
[3] LI Ming-Tao, ZHENG Jian-Hua, YU Xi-Zheng, GAO Dong. Transfer trajectory design for SunEarth Halo orbit based on manifold insertion [J]. 吉林大学学报(工学版), 2011, 41(02): 585-0589.
[4] BI Yong-Tao, HE Feng-Hua, YAO Yu. Design of blended lateral thrust and aerodynamic surface control strategy for agile missile [J]. 吉林大学学报(工学版), 2011, 41(02): 590-0596.
[5] ZHANG Tao, XU Xiao-Su. Measurement delay effect on INS/GPS/DVL hybrid navigation system and calibration method analysis [J]. 吉林大学学报(工学版), 2010, 40(06): 1735-1740.
[6] ZHOU Wen-Ya, YANG Di, LIANG Xin-Gang. Using Gauss pseudospectral method to optimize aeroassisted orbit transfer [J]. 吉林大学学报(工学版), 2010, 40(05): 1454-1459.
[7] CHEN Min,ZHANG Shi-jie,ZHANG Ying-chun. Combined attitude control method of small satellite using reaction wheels and magnetorquers [J]. 吉林大学学报(工学版), 2010, 40(04): 1155-1160.
[8] TIAN Ji-chao, CUI Nai-gang, RONG Si-yuan. Orbit transformation scheme for satellite formation reconfiguration [J]. 吉林大学学报(工学版), 2010, 40(04): 1161-1165.
[9] QI Ying-hong,CAO Xi-bin,ZHENG Peng-fei. Small satellite co-orbital transfer strategy [J]. 吉林大学学报(工学版), 2010, 40(01): 293-0298.
[10] LI Yu-qing,XU Min-qiang,WANG Ri-xin. Scheduling for observations of deep space spacecraft under uncertainty [J]. 吉林大学学报(工学版), 2009, 39(06): 1590-1594.
[11] WANG Ji-He, ZHANG Jin-Xiu, CAO Xi-Bin. Probability density function basd collision monitoring method within formation flight [J]. 吉林大学学报(工学版), 2009, 39(05): 1395-1400.
[12] LI Zhe, DING Zhen-Liang, YUAN Feng. Optical measurement of aircraft attitude parameters and accuracy Monte Carlo simulation [J]. 吉林大学学报(工学版), 2009, 39(05): 1401-1406.
[13] LI Ming-Tao, ZHENG Jian-Hua, YU Ti-Zheng, GAO Dong. Strategy for impulsive station keeping of libration point missions [J]. 吉林大学学报(工学版), 2009, 39(05): 1407-1412.
[14] LIU Wei,MENG Xin,ZHENG Jian-hua .

Planning and scheduling of earth observing satellites

[J]. 吉林大学学报(工学版), 2009, 39(02): 551-0554.
[15] CAO Xi-bin,HE Dong-lei . Relative motion equation for perturbed ellipitical reference orbit formation [J]. 吉林大学学报(工学版), 2009, 39(01): 234-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yun-peng, WU Di, WANG Zhan-zhong, REN Yuan-yuan. Relationship between road freight transport demand and national economy development based on co-integration analysis[J]. 吉林大学学报(工学版), 2011, 41(01): 56 -0061 .
[2] HAO Zhi-yong, DING Zheng-yin, SUN Qiang. Sound insulation performance of the silent floor of high-speed train based on FE-SEA hybrid method[J]. 吉林大学学报(工学版), 2015, 45(4): 1069 -1075 .
[3] Jia⁃xu WANG,Xiao⁃kang NI,Yan⁃feng HAN,Guo XIANG,Ke XIAO. Numerical model of mixed lubrication for microgroove bearing considering axial reciprocating motion[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 888 -896 .