Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1539-1546.doi: 10.13229/j.cnki.jdxbgxb20180151

Previous Articles    

Analysis of transient flow field characteristics of large-scale hydrodynamic coupling under speed regulation

Xiu-quan LU(),Chun-yu HU,Ya-long CHAI,Wen-xing MA(),Jian-nan ZHANG   

  1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
  • Received:2018-02-07 Online:2019-09-01 Published:2019-09-11
  • Contact: Wen-xing MA E-mail:xiuquan@jlu.edu.cn;mawx@jlu.edu.cn

Abstract:

In order to study the mechanism of internal flow of large-scale hydrodynamic coupling under dynamic speed regulation, the dynamic speed regulation process is defined by UDF program in this paper, and a numerical method for calculating the transient gas-liquid two phase flow with a large-scale hydrodynamic coupling is established. The dynamic circulation flow of gas-liquid two phase fluid between the pump and the turbine wheel is produced, and the gas-liquid two phase distribution state is obtained. The results show that with a smaller slip ratio at the initial stage of speed regulation with the shielding effect of high energy fluid in the vane free region, the torque coefficient is significantly reduced. With the decrease in speed ratio, the turbulent kinetic energy increases gradually, and the turbulent intensity of the pump impeller is much larger than that of the turbine. In the inlet of the pump wheel, the turbulent kinetic energy has an extreme value, and the phenomenon is especially evident in the braking condition. The PIV test shows that the numerical simulation results are in good agreement with the test. The work of this paper provides the necessary theoretical basis for optimizing the transient performance under the dynamic speed regulation mode of the large-scale hydrodynamic coupling.

Key words: fluid transmission and control, transient flow field, gas-liquid two phase flow, hybrid reynolds average navier-stokes/large eddy simulation, user defined functions

CLC Number: 

  • TH137

Fig.1

Geometric model of impellers and flow channel"

Fig.2

Mesh model of flow channel"

Fig.3

Partially encrypted picture"

Fig.4

Definition of chord surface"

Fig.5

Pump wheel and turbine position map on chord"

Fig.6

Flow process of dynamic loop at chord surface r 1 "

Fig.7

Flow process of dynamic loop at chord surface r 2 "

Fig.8

Distribution of gas-liquid two-phase in dynamic speed regulation"

Fig.9

Comparison of change curve of pump rig coefficient"

Fig.10

Pressure distributions at dynamic speed regulation"

Fig.11

Contrast curve of turbulent kinetic energy at dynamic speed regulation"

Fig.12

Test rig of PIV"

Fig.13

Comparison of experimental and simulation results"

1 内山恭一, 高木武夫, 岡崎勉 . 可変油量形流体継手の回転速度変動と内部流れの解明[C]∥日本機械学会論文集, 機論(B编), 日本,1978, 46: 893-901.
2 Christen M , Kernchen R . Fluid velocity in of constant fill turbo couplings: measurements using laser Doppler velocimetry[J]. Antriebstechnik, 2001, 40: 71-74.
3 Hampela U , Hoppea D , K-H Dieleb , et al . Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2): 85-90.
4 Hoppe D , Fietz J , Hampel U , et al . Gamma tomographic visualization of the fluid distribution in a hydrodynamic coupling[EB/OL]. [2018-02-07]. https:∥
5 Huitenga H , Mitra N K . Improving startup behavior of fluid couplings through modification of runner geometry: part I—fluid flow analysis and proposed improvement[J]. Journal of Fluid Engineering, 2000, 122(4): 683-688.
6 Huitenga H , Mitra N K . Improving startup behavior of fluid couplings through modification of runner geometry: part II—fluid flow analysis and proposed improvement[J]. Journal of Fluid Engineering, 2000, 122(4): 689-693.
7 王玉岭, 闫清东, 李晋, 等 . 基于CFD的液力变矩器内部流场分布特征研究[J]. 液压与气动, 2015(7): 36-40.
Wang Yu-ling , Yan Qing-dong , Li Jin , et al . Distribution of the torque converter internal flow field based on CFD[J]. Chinese Hydraulics & Pneumatics, 2015(7): 36-40.
8 李晋, 闫清东, 王玉岭, 等 . 液力变矩器泵轮内流场非定常流动现象研究[J]. 机械工程学报, 2016, 52(14): 188-195.
Li Jin , Yan Qing-dong , Wang Yu-ling , et al . Research on unsteady flow field of the pump in hydraulic torque converter[J]. Journal of Mechanical Engineering, 2016, 52(14): 188-195.
9 魏巍, 刘旭, 闫清东 . 液力缓速器全充液工况下POD基对流场重构精度影响规律分析[J/OL]. [2018-02-07]. http:∥
10 孔令兴, 魏巍, 闫清东 . 液力缓速器关键工作参数全流道数值模拟研究[J]. 华中科技大学学报: 自然科学版, 2017, 45(3): 111-116.
Kong Ling-xing , Wei Wei , Yan Qing-dong . Full-port CFD analysis of key operating parameters for hydrodynamic retarders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(3): 111-116.
11 卢秀泉, 马文星, 李雪松, 等 . 限矩型液力偶合器气-液两相环流特性仿真预测[J]. 农业工程学报, 2014, 30(9): 27-34.
Lu Xiu-quan , Ma Wen-xing , Li Xue-song , et al . Simulation and prediction on fluid-gas circulation characteristics of torque limited hydrodynamic coupling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 27-34.
12 张德生, 赵继云, 刘立宝, 等 . 基于CFD的桃形腔偶合器流场分析及结构优化[J]. 中国矿业大学学报, 2010, 39(5): 687-692.
Zhang De-sheng , Zhao Ji-yun , Liu Li-bao , et al . Flow field analysis and structure optimization of peach shaped chamber hydrodynamic coupling based on CFD[J]. Journal of China University of Mining & Technology, 2010, 39(5): 687-692.
13 柴博森, 马文星, 刘春宝 . 基于互相关算法的液力偶合器内部流场分析[J]. 农业机械学报, 2011, 42(12): 38-42.
Chai Bo-sen , Ma Wen-xing , Liu Chun-bao . Analysis of internal flow field in hydrodynamic coupling based on cross-correlation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 38-42.
14 刘应诚 . 液力偶合器实用手册[M]. 北京: 化学工业出版社, 2008.
15 施法中 . 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001.
16 齐学义 . 流体机械设计理论与方法[M]. 北京: 中国水利水电出版社, 2008.
[1] De⁃sheng WEN,Guang⁃dong SUI,Shan⁃heng TIAN,Shao⁃peng WANG,Pei⁃kun FENG,Xiao⁃xue LIU. Leakage/volumetric efficiency analysis and experiment of internal and external meshing gear motors [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1186-1193.
[2] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[3] LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei. Integrated pulsation micro mixing chip for three-phase flow [J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[4] LIU Guo-jun, ZHANG Yan-yan, YANG Xu-hao, LI Xin-bo, LIU Jian-fang, YANG Zhi-gang. Application of surface acoustic wave in controlled synthesis of gold nanoparticles [J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[5] WEN De-sheng, CHEN Fan, ZHEN Xin-shuai, ZHOU Cong, WANG Jing, SHANG Xu-dong. Application of pressure control loop with double-stator pumps and motors [J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[6] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin. Rotor radial force of double-stator single-acting motor [J]. 吉林大学学报(工学版), 2015, 45(6): 1825-1830.
[7] WEN De-sheng, ZHENG Zhen-quan, WANG Yuan, YANG Jie, ZHANG Kai-ming, ZHANG San-xi. Analysis of rotational speed and torque of differential connection of asymmetric multi-speed hydraulic motor [J]. 吉林大学学报(工学版), 2014, 44(5): 1342-1346.
[8] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque [J]. 吉林大学学报(工学版), 2014, 44(3): 675-679.
[9] MA Wen-xing, SONG Jian-jun, LIU Chun-bao, HU Jing, CHU Ya-xu. Calculation method of outlet pressure of open-type hydrodynamic retarder [J]. 吉林大学学报(工学版), 2014, 44(01): 86-90.
[10] YUAN Zhe, MA Wen-xing, LU Xiu-quan, HU Jing, YANG Shan-shan. Dynamic braking performance prediction and analysis of hydrodynamic retarder [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 160-164.
[11] YUAN Zhe, MA Wen-xing, LIU Chun-bao, LIU Hao. Temperature field analysis of the open-type hydrodynamic retarder of heavy vehicle [J]. 吉林大学学报(工学版), 2013, 43(05): 1271-1275.
[12] LIU Shu-cheng, WEI Wei, YAN Qing-dong, ZHOU Qia. Simulation method of idling characteristic of hydrodynamic torque converter stator wheel [J]. 吉林大学学报(工学版), 2013, 43(01): 22-27.
[13] YAN Qing-dong, ZOU Bo, WEI Wei. Numerical investigation of brake performance of hydrodynamic tractor-retarder assembly [J]. 吉林大学学报(工学版), 2012, 42(01): 91-97.
[14] LIU Cheng-qiang, JIANG Ji-hai. Flow characteristic of inclined plate and axial plunger type hydraulic transformer [J]. 吉林大学学报(工学版), 2012, 42(01): 85-90.
[15] QI Pan-guo, WANG Hui, HAN Jun-wei. Structured singular value-synthesis based robust control of hydraulic control loading system [J]. 吉林大学学报(工学版), 2011, 41(4): 1004-1009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!