Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1936-1944.doi: 10.13229/j.cnki.jdxbgxb20181279

Previous Articles     Next Articles

Effects of radial strut width on flow structure ofsingle⁃cavity trapped vortex combustor

Yi-xiao ZHU1(),Xiao-min HE1,2(),Yi JIN1,2   

  1. 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
    2. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
  • Received:2018-12-27 Online:2019-11-01 Published:2019-11-08
  • Contact: Xiao-min HE E-mail:zyx_tvc@nuaa.edu.cn;hxmnuaa@outlook.com

Abstract:

In order to study the flow structure of different width of radial strut, a single-cavity trapped vortex combustor with diffuser and casings was designed. Unburnt flow field experiments were carried out by changing the width of radial strut on the combustor. Experiments were accomplished at atmospheric pressure and temperature. The main parameters of the experiments were shown as follows: the width of radial strut was 40,30,20 mm while the number of radial strut was constant. The results showed that on the central section of mainstream (PM), there were two vortices in the cavity. The main vortex was located in the middle of cavity, and the secondary vortex was located between the main vortex and mainstream. On the central section of radial strut (PA), different width of radial strut would form two different flow structures. When the width of radial strut was wider, the cavity had a single-vortex flow structure, which meant that only the main vortex existed in cavity. The reflux airflow from main vortex flowed along the radial strut to the lower wall of the liner. When the width of radial strut was narrower, the cavity had a double-vortex flow structure, which meant that the meanstream flowed to the behind of radial strut.

Key words: power machinery and engineering, single-cavity trapped vortex combustor, width of radial strut, flow structure

CLC Number: 

  • TK411.12

Fig.1

2D schematic diagram of single-cavitytrapped vortex combustor"

Fig.2

Schematic diagram of radial strut structure"

Fig.3

Schematic diagram of unburnt flow field test system"

Table 1

Airflow distributions of differentradial struts width %"

进气位置 联焰板宽度/mm
40 30 20
凹腔前 22.59 19.80 18.15
凹腔后 10.92 8.61 6.82
凹腔主流 37.08 47.94 55.09

Fig.4

Schematic diagram of test measurement sections"

Fig.5

Flow structures in XY section with different width of radial strut"

Fig.6

Flow structures in XZ plane with different width of radial strut"

1 Roquemore W M , Shouse D , Burrus D , et al . Trapped vortex combustor concept for gas turbine engines[C]∥39th Aerospace Sciences Meeting and Exhibit, Reno, United States, 2001: 102856.
2 Zhao D , Gutmark E , Goey P . A review of cavity-based trapped vortex, ultra-compact, high-g, inter turbine combustors[J]. Progress in Energy and Combustion Science, 2018, 66(1): 42-82.
3 吴泽俊, 何小民, 洪亮, 等 . 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术, 2015, 36(4): 601-607.
3 Wu Ze-jun , He Xiao-min , Hong Liang , et al . Ignition and lean blowout characteristics of a single-cavity[J]. Journal of Propulsion Technology, 2015, 36(4): 601-607.
4 Ezhil K P K , Mishra D P . Numerical simulation of cavity flow structure in an axisymmetric trapped vortex combustor[J]. Aerospace Science and Technology, 2012, 21(1): 16-23.
5 Ezhil K P K , Mishra D P . Combustion noise characteristics of an experimental 2D trapped vortex combustor[J]. Aerospace Science and Technology, 2015, 43: 388-394.
6 Ezhil K P K , Kumar P , Mishra D P . Experimental investigation on the performance characteristics of a 2D trapped vortex combustor[J]. Journal of Aerospace Engineering, 2016, 230(10): 1840-1847.
7 Ezhil K P K , Mishra D P . Flame stability characteristics of two-dimensional trapped vortex combustor[J]. Combustion Science and Technology, 2016, 188(8): 1283-1302.
8 Ezhil K P K , Mishra D P . Combustion characteristics of a two-dimensional twin cavity trapped vortex combustor[J]. Journal of Engineering for Gas Turbines and Power—Transactions of the ASME, 2017, 139(7): 071504.
9 Ezhil K P K , Mishra D P . Numerical study of reacting flow characteristics of a 2D twin cavity trapped vortex combustor[J]. Combustion Theory and Modelling, 2017, 21(4): 1-19.
10 金义 . 高油气比驻涡燃烧室流动与燃烧性能研究[D]. 南京: 南京航空航天大学能源与动力学院, 2013.
10 Jin Yi .An investigation on flow and combustion characteristics of a high fuel air ratio trapped-vortex combustor[D]. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2013.
11 Jin Y , He X M , Jiang B , et al . Effect of cavity-injector/radial-strut relative position on performance of a trapped vortex combustor[J]. Aerospace Science and Technology, 2014, 32(1): 10-18.
12 Jin Y , He X M , Zhang J Y , et al . Numerical investigation on flow structures of a laboratory-scale trapped vortex combustor[J]. Applied Thermal Engineering, 2014, 66(1/2): 318-327.
13 Jin Y , Li Y F , He X M , et al . Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor[J]. Applied Energy, 2014, 134: 257-269.
14 Zhu Yi-xiao , Jin Yi , He Xiao-min . Effects of location and angle of primary injection on the cavity flow structure of a trapped vortex combustor model[J]. Optik, 2019, 180: 699-712.
15 Li M Y , He X M , Zhao Y L , et al . Effect of strut length on combustion performance of a trapped vortex combustor[J]. Aerospace Science and Technology, 2018, 76: 204-216.
16 Wu Z J , Jin Y , He X M , et al . Experimental and numerical studies on a trapped vortex combustor with different struts width[J]. Applied Thermal Engineering, 2015, 91: 91-104.
17 何小民, 许金生, 苏俊卿 . 驻涡区进口结构参数影响TVC燃烧性能的试验[J]. 航空动力学报, 2007, 22(11): 1798-1802.
17 He Xiao-min , Xu Jin-sheng , Su Jun-qing . Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power, 2007, 22(11): 1798-1802.
18 何小民, 张净玉 . 驻涡燃烧室燃烧组织方式和设计思路分析[J]. 航空科学技术, 2008(2): 26-29.
18 He Xiao-min , Zhang Jing-yu . Combustion buildup and design routine of trapped vortex combustor[J]. Aeronautical Science and Technology,2008(2): 26-29.
19 何小民, 许金生, 苏俊卿 . 驻涡燃烧室燃烧性能试验[J]. 航空动力学报, 2009, 24(2): 318-323.
19 He Xiao-min , Xu Jin-sheng , Su Jun-qing . Experimental research of the performance of the trapped vortex combustor[J]. Journal of Aerospace Power, 2009, 24(2): 318-323.
20 金义, 何小民, 蒋波 . 富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J]. 航空动力学报, 2011, 26(5): 1031-1036.
20 Jin Yi , He Xiao-min , Jiang Bo . Experimental study on emission performance of rich-burn quick-quench lean-burn (RQL) trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(5):1031-1036.
21 Jin Y , He X M , Zhang J Y , et al . Experimental study on emission performance of an LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3): 335-341.
22 Jin Y , He X M , Jiang B , et al . Design and performance of an improved trapped vortex combustor[J]. Chinese Journal of Aeronautics, 2012, 25(6): 864-870.
[1] Qiao WANG,Wan-chen SUN,Liang GUO,Peng CHENG,Lu-yan FAN,Guo-liang LI. Effects of butanol/diesel blends on combustion and particulate emission characteristics of compression ignition engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1920-1928.
[2] Chang-qing SONG,Wen-miao CHEN,Jun LI,Da-wei QU,Hao CUI. Effects of single and dual ignition on combustion characteristics of natural gas under different equivalence ratios [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1929-1935.
[3] Chang-cheng LIU,Zhong-chang LIU,Jing TIAN,Yun XU,Ze-yu YANG. In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1911-1919.
[4] Xiao-yu HU,Guo-xiang LI,Shu-zhan BAI,Ke SUN,Si-yuan LI. Modified boiling heat transfer model considering roughness and material of heating surface [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1945-1950.
[5] De⁃jun WANG,Zhi⁃chao LYU,Qi⁃ming WANG,Jian⁃rui ZHANG,Jian⁃nan DING. Cylinder pressure identification based on EKF and frequency⁃amplitude modulation Fourier series [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1174-1185.
[6] Peng⁃fei ZANG,Zhe WANG,Yang GAO,Chen⁃le SUN. Investigation of integrated control strategy for stable operation of linear generator/engine system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 798-804.
[7] JIANG Tao,LIN Xue-dong,LI De-gang,YANG Miao,TANG Xue-lin. Effect of control parameters on heat release rate with ANN method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1747-1754.
[8] LI Zhi-jun, WANG Hao, HE Li, CAO Li-juan, ZHANG Yu-chi, ZHAO Xin-shun. Soot distribution features and its influence factors in catalytic diesel particulate filte [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1466-1474.
[9] QIN Jing, XU He, PEI Yi-qiang, ZUO Zi-nong, LU Li-li. Influence of initial temperature and initial pressure on premixed laminar burning characteristics of methane-dissociated methanol flames [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1475-1482.
[10] LIN Xue-dong, JIANG Tao, XU Tao, LI De-gang, GUO Liang. Control strategy of high pressure pump in starting condition of high pressure common rail diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1436-1443.
[11] ZHONG Bing, HONG Wei, JIN Zhao-hui, SU Yan, XIE Fang-xi, ZHANG Fu-wei. Movement characteristics of hydraulic variable valve train with early intake valve closing [J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[12] LI Long, ZHANG You-tong, ZUO Zheng-xing. Application of variable-load control in cylinder pressure control of free-piston engine generator [J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[13] WEI Hai-qiao, PEI Zi-gang, FENG Deng-quan, PAN Jia-ying, PAN Ming-zhang. Effect of multi-injectionpiezo injector on particulate emission in gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[14] TIAN Jing, LIU Zhong-chang, LIU Jin-shan, DONG Chun-xiao, ZHONG Ming, DU Wen-chang. Performance optimization of diesel engine based on response surface methodology of multi-boundary combustion conditions [J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[15] LI Zhi-jun, HE Li, JIANG Rui, SHEN Bo-xi, KONG Xiang-jin, LIU Shi-yu. Evaluation of influence of ash distribution on diesel particulate filter pressure drop [J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Pei Shi-hui,Zhao Hong-wei . RSAbased 3move undeniable signatures scheme[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 134 -138 .
[2] Yao Zhi-sheng, Shao Chun-fu, Xiong Zhi-hua, Yue Hao . Short-term traffic volumes forecasting of road network based on principal component analysis and support vector machine[J]. 吉林大学学报(工学版), 2008, 38(01): 48 -52 .
[3] SUN Zhijun, LI Zhijun, HONG Wei, LIU Shuliang. Effect of Lean and Rich Mixture Operating Time on NOx Emission from Lean Burn Gasoline Engine with AdsorberReduction Catalytic Converter[J]. 吉林大学学报(工学版), 2005, 35(04): 373 -376 .
[4] Wang Jiazhong,,Wang Longshan,Li Guofa,Zhou Guihong,Ding Ning. Intelligent prediction and control system of shaft workpiece size in cylinder traverse grinding[J]. 吉林大学学报(工学版), 2006, 36(02): 204 -0208 .
[5] Lü Jian-ting,Ma Guang-fu,Li Chuan-jiang . Fuzzy sliding mode controller design for satellite attitude tracking[J]. 吉林大学学报(工学版), 2007, 37(04): 955 -958 .
[6] Wang Wei,Yang Zhao-sheng,Li Yi-wu,Liu Xin-jie,Chen Xin . Weighting calculation and judging method of regional traffic state based on information coordination[J]. 吉林大学学报(工学版), 2007, 37(03): 524 -0527 .
[7] Lu Shao-wei;Chen Hui; Xie Huai-qin. Optimum design and experiment for CFRPstrengthened RC beams[J]. 吉林大学学报(工学版), 2008, 38(03): 642 -0646 .
[8] Yu Sheng-bao,Zhang Xian-tao,Chen Tian-qi,Wang Zhao-ming . Electrical detection with noncontact electrode[J]. 吉林大学学报(工学版), 2008, 38(02): 370 -0373 .
[9] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[10] Zhang Ying, Duan Guang-ren, He Liang . Robust stability of a class of discretetime switched systems with timedelay [J]. 吉林大学学报(工学版), 2006, 36(05): 740 -0744 .