Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 758-764.doi: 10.13229/j.cnki.jdxbgxb20190265

Previous Articles    

Design of bionic tensegrity leg and simulation analysis of its impact resistance

Zhi-hui QIAN1(),Si-jie WU1,2,Qiang WANG1,Xin-yan ZHOU1,Jia-nan WU1,Lei REN1(),Lu-quan REN1   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
    2.College of Electrical and Mechanical Engineering, Harbin Institute of Technology, Harbin 150006, China
  • Received:2019-03-21 Online:2020-03-01 Published:2020-03-08
  • Contact: Lei REN E-mail:zhqian@jlu.edu.cn;lren@jlu.edu.cn

Abstract:

To solve the problem of poor impact resistance of robot leg and foot system, a bionic tensegrity mechanical leg was developed based on the principle of biological tensegrity. Flexible materials were employed to simulate the biological joint ligament and tendon, instead of using rigid hinge joint. Finite element simulation results show that the bionic tensegrity mechanical leg has better impact resistance than the traditional mechanical leg. The material sensitivity analysis results show that during impact, the flexible member in the bionic tensegrity leg absorbs the impact energy effectively through deformation, reduces the impact strength, and improves the stress distribution state of the rigid member. Within the scope of the study, keeping the elastic modulus of bionic tendon material as constant, the smaller the elastic modulus of the bionic ligament, the stronger the anti-impact and anti-bending resistance of the bionic leg. Similarly, when the bionic ligament is kept constant, the larger the elastic modulus of the bionic tendon, the better the anti-impact and anti-bending resistance of the bionic leg. Furthermore, this project provides important theoretical basis for the innovative design of robot leg-foot system.

Key words: bionic engineering, tensegrity principle, bionic mechanical limb, impact resistance

CLC Number: 

  • TB17

Fig.1

Bionic tensegrity leg"

Fig.2

Simplified bionic tensegrity leg and traditional leg"

Table 1

Material property of bionic and traditional leg"

部件材料弹性模量/MPa泊松比文献
骨骼铝合金70 0000.30[ 20]
仿生韧带LDPE700.45[ 22]
仿生筋腱LDPE1400.45[ 22]

Fig.3

Loading and boundary conditions"

Fig.4

Nodal stress curves along two paths"

Fig.5

Compression and tension stress distribution"

Fig.6

Elastic strain energy of two mechanical legs"

Fig.7

Effect of elastic modulus variation of bionic ligament on nodal stress distribution of bionic tensegrity leg"

Fig.8

Effect of elastic modulus variation of bionic tendon on nodal stress distribution of bionic tensegrity leg"

1 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报, 2005, 41( 8): 3- 17.
Gao Feng. Thoughts on the status quo and development trend of institutional research[J]. Journal of Mechanical Engineering, 2005, 41( 8): 3- 17.
2 陈学东, 郭鸿勋, 渡边桂吾. 四足步行机器人爬行步态的正运动学分析[J]. 机械工程学报, 2003, 39( 2): 8- 12.
Chen Xue-dong, Guo Hong-xun, Duan Gui-wu. Direct kinematics analysis of crawling gait of four-legged walking robot[J]. Journal of Mechanical Engineering, 2003, 39( 2): 8- 12.
3 Pongas D, Mistry M, Schaal S. A robust quadruped walking gait for traversing rough terrain[C]∥ IEEE International Conference on Robotics and Automation, Roma, 2007: 1474- 1479.
4 Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41( 2): 10823- 10825.
5 Dynamics Boston. Cheetah[EB/OL].[ 2018-12-18].
6 Unitree. Laikago[EB/OL].[ 2018-12-30].
7 熊蓉. 仿生腿足式机器人的发展[J]. 机器人技术与应用, 2017( 2): 29- 36.
Xiong Rong. Development of bionic leg-foot robot[J]. Robotics and Applications, 2017( 2): 29- 36.
8 钱志辉, 苗怀彬, 任雷, 等. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报: 工学版, 2015, 45( 6): 1857- 1862.
Qian Zhi-hui, Miao Huai-bin, Ren Lei, et al. Lower limb joint angles of German shepherd dog during foot-ground contact in different gait patterns[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45( 6): 1857- 1862.
9 钱志辉, 苗怀彬, 商震, 等. 基于多种步态的德国牧羊犬足-地接触分析[J]. 吉林大学学报: 工学版, 2014, 44( 6): 1692- 1697.
Qian Zhi-hui, Miao Huai-bin, Shang Zheng, et al. Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44( 6): 1692- 1697.
10 Auke J I. Biorobotics: using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346( 6206): 196- 203.
11 Seok S, Wang A, Meng C Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20( 3): 1117- 1129.
12 丁良宏. Bigdog四足机器人关键技术分析[J]. 机械工程学报, 2015, 51( 7): 1- 23.
Ding Liang-hong. Key technologies of bigdog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51( 7): 1- 23.
13 Wolf S, Hirzinger G. A new variable stiffness design: Matching requirements of the next robot generation[C]∥ IEEE International Conference on Robotics and Automation, Pasadena, 2008: 1741- 1746.
14 Seok S, Wang A, Meng C M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]∥ IEEE International Conference on Robotics and Automation, Germany, 2013: 3307- 3312.
15 Hutter M, Gehring C, Bloesch M, et al. “Starleth”: a compliant quadrupedal robot for fast, efficient and versatile locomotion[C]∥ 15th International Conference on Climbing Walking Robots and the Support Technologies for Mobile Machines, Baltimore, 2012: 483- 490.
16 Folkertsma S K G, Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal, 2012: 2210- 2215.
17 Haberland M, Karssen J, Kim S, et al. The effect of swing leg retraction on running energy efficiency[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011: 3957- 3962.
18 Ren L, Qian Z, Ren L. Biomechanics of musculoskeletal system and its biomimetic implications: a review[J]. Journal of Bionic Engineering, 2014, 11( 2): 159- 175.
19 Levin S M. The tensegrity-truss as a model for spine mechanics: biotensegrity[J]. Journal of Mechanics in Medicine and Biology, 2012, 2( 3/4): 375- 378.
20 Bai R X, Jiang H, Lei Z K, et al. Virtual field method for identifying elastic-plastic constitutive parameters of aluminum alloy laser welding considering kinematic hardening[J]. Optics and Lasers in Engineering, 2018, 110: 122- 131.
21 Ristaniemi A, Stenroth L, Mikkonen S, et al. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon[J]. Journal of Biomechanics, 2018, 79: 31- 38.
22 梁基照. 微珠填充LDPE复合物拉伸弹性模量的预测[J]. 塑料, 1997, 26( 6): 17- 20.
Liang Ji-zhao. Prediction of tensile elastic modulus of LDPE complex filled with microbeads[J]. Plastics, 1997, 26( 6): 17- 20.
[1] TIAN Wei-jun, WANG Ji-yue, LI Ming, ZHANG Xing-wang, ZHANG Yong, CONG Qian. Observation of locomotion of water strider towards water strider robot [J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[2] CHEN Dong-hui, LIU Wei, LYU Jian-hua, CHANG Zhi-yong, WU Ting, MU Hai-feng. Bionic design of corn stubble collector based on surface structure of Patinopecten yessoensis [J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[3] TIAN Li-mei, WANG Yang-jun, LI Zi-yuan, SHANG Yan-geng. Development of drag-reduction test system of bionic functional surfaces with internal flow [J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[4] WANG Ying, LI Jian-qiao, ZHANG Guang-quan, HUANG Han, ZOU Meng. Mechanical characteristics of bionic walking foot in different media [J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[5] ZHANG Rui, YANG Ming-ming, LIU Hai-bao, ZENG Gui-yin, PAN Run-duo, LI Jian-qiao. Numerical simulation of sand flow fixation characteristics of plantar surface of ostrich didactyl foot [J]. 吉林大学学报(工学版), 2015, 45(2): 508-515.
[6] TIAN Li-mei, SHANG Zhen, HU Guo-liang, LI Nan. Numerical simulation of the lift and drag characteristics of passenger car based on morphological bionics [J]. 吉林大学学报(工学版), 2014, 44(5): 1283-1289.
[7] ZHANG Rui, ZHANG Si-hua, LIU Fang, LI Jian-qiao. Structure design and performance analysis of bionic desert hiking stick [J]. 吉林大学学报(工学版), 2013, 43(04): 976-982.
[8] ZHANG Yan, HUANG He, REN Lu-quan. Drag reduction experiment of bionic excvavtor bucket teeth [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 126-130.
[9] CHANG Zhi-yong, CHEN Dong-hui, TONG Jin, TONG Yue-ying, XIE Jun. Human olfactory feature based bionic electronic nose technology for pork freshness detection [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 131-134.
[10] SHI Lei, ZHANG Cheng-chun, WANG Jing, WANG Yong-hua,ZHANG Xue-peng, REN Lu-quan. Reduction of aerodynamic noise from NACA0018 airfoil model using bionic methods [J]. 吉林大学学报(工学版), 2011, 41(6): 1664-1668.
[11] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362-0366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!