吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 508-515.doi: 10.13229/j.cnki.jdxbgxb201502026

• Orignal Article • Previous Articles     Next Articles

Numerical simulation of sand flow fixation characteristics of plantar surface of ostrich didactyl foot

ZHANG Rui1, YANG Ming-ming1, LIU Hai-bao1, ZENG Gui-yin1, PAN Run-duo2, LI Jian-qiao1   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022,China;
    2.Department of Radiology, the First Hospital, Jilin University, Changchun 130021,China
  • Received:2013-12-20 Online:2015-04-01 Published:2015-04-01

Abstract: 3D model reconstruction and partition of the plantar surface of ostrich didactyl foot were achieved using reverse engineering. Discrete element method and finite element method were employed to simulate the interactions between the plantar surface of ostrich didactyl foot and sand. It was shown that the flowing extent of sand particles under the plantar surface along the foot breadth direction was greater than that along the foot length direction. This may indicate that the plantar surface morphology of ostrich foot can preferably retard the slippage during ostrich foot moving ahead on sand. Within the plantar surface of ostrich foot, the middle groove in the third toe plantar surface has most obvious effect of sand flow fixation, under which the forces on the sand particle groups present the grid-patterned stable tight distribution. A mathematical model of the middle groove in the third toe plantar surface was established, which may provide theoretical reference for bionic design of the plantar surface of ostrich foot.

Key words: bionic engineering, didactyl foot of ostrich, plantar surface morphology, sand flow fixation, numerical simulation

CLC Number: 

  • TB17
[1] 谢懿. “勇气”号轶事[J]. 太空探索,2012(8):48-49.
Xie Yi. The anecdote of “Spirit Rover”[J]. Space Exploration, 2012 (8):48-49.
[2] Wong J Y. Advances and challenges in terrain-vehicle systems - presidential address[C]∥Proceedings of the 15th International Conference of International Society for Terrain-Vehicle Systems (ISTVS),Hayama, Japan, 2005.
[3] 任露泉,佟金,李建桥,等. 松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9.
Ren Lu-quan,Tong Jin, Li Jian-qiao, et al. Soft ground mechanical bionic theory and technology[J]. Journal of Agricultural Machinery, 2000, 31(1):5-9.
[4] 柏龙,葛文杰,陈晓红,等. 星面探测仿生间歇式跳跃机器人设计及实现[J]. 机器人,2012(1): 32-37.
Bai Long, Ge Wen-jie, Chen Xiao-hong, et al. Design and implementation of a bio-inspired intermittent hopping robot for planetary surface exploration[J]. Robot, 2012(1): 32-37.
[5] 王志浩,裘熙定,季学武. 驼足与沙地相互作用的研究[J]. 吉林工业大学学报,1995,25(2):1-7.
Wang Zhi-hao,Qiu Xi-ding,Ji Xue-wu. The study of the interaction between camel foot and sand[J]. Journal of Jilin University of Technology, 1995, 25(2): 1-7.
[6] 李杰,庄继德,裘熙定,等. 仿驼足车辆行走机构的设计与试验[J]. 中国机械工程,1999,19(6):676-679.
Li Jie, Zhuang Ji-de, Qiu Xi-ding, et al. Imitation of camel foot vehicles and test in the design of traveling mechanism[J]. The Chinese Mechanical Engineering, 1999, 19(6): 676-679.
[7] 李杰,庄继德,魏东,等. 沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J]. 吉林大学学报:工学版,2006,36(4):510-513.
Li Jie, Zhuang Ji-de, Wei Dong, et al.Comparative traction performance tests betweenbionic camel foot tire and common tire[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(4): 510-513.
[8] Daniel Goldman, Haldun Komsuoglu, Daniel Koditschek. March of the sandbots-a new generation of legged robots will navigate the world's trickiest terrain[J]. IEEE Spectrum, 2009,46(4):30-35.
[9] Li C, Umbanhowar P B, Komsuoglu H, et al. The effect of limb kinematics on the speed of a legged robot on granular media[J]. Experimental Mechanics, 2010,50(9):1383-1393.
[10] Jindrich D L,Smith N C,Jespers K,et al.Mechanics of cutting maneuvers by ostriches(Struthio camelus)[J].The Journal of Experimental Biology,2007,210(8):1378-1390.
[11] Rubenson J, Lloyd D G, Heliams D B, et al. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics[J]. Journal of the Royal Society Interface, 2011,8(58):740-755.
[12] Schaller N U. Structural attributes contributing to locomotor performance in the ostrich (Struthio camelus)[D].The Natural Sciences amd Mathematics College of the Ruperto-Carola Journal of Heidelberg,Germany, 2008.
[13] 张玉光,李志恒,田晓阳. 鸟类后肢骨骼组合的长度比例及其机理初步分析[J]. 四川动物,2008, 27(4):497-505.
Zhang Yu-guang, Li Zhi-heng,Tian Xiao-yang. Length ratio and elementary mechanism analysis of combination of avian hindlimbs[J]. Animal of SiChuan, 2008, 27(4): 497-505.
[14] Baciadonna L, Zucca P, Tommasi L. Posture in ovo as a precursor of footedness in ostriches (Struthio camelus)[J]. Behavioural Processes, 2010, 83 (1): 130-133.
[15] Schaller N U, D'Aot K, Villa R, et al. Toe function and dynamic pressure distribution in ostrich locomotion[J]. The Journal of Experimental Biology,2011,214(7):1123-1130.
[16] Zhang Rui, Zhang Si-hua, Li Xiu-juan, et al. Relationship between foot structure morphology and ostrich traveling ability on sand[C]∥Proceedings of International Bionic Engineering Conference, Boston, USA (CD),2011.
[17] El-Gendy S A A, Derbalah Amira, Abu El-Magd M E R. Histo-morphological study on the footpad of ostrich (Struthio camelus) in relation to locomotion[J].J Vet Anat, 2011, 4(2): 77-97.
[18] Zhang Rui. Analysis in the load-supporting mechanism of ostrich(struthio camelus) didactyl foot at the static standing stance[J]. Journal of Investigative Medicine, 2013, 61(4): S19.
[19] 赵旗,徐颖,李杰,等. 车辆行驶工况下的沙漠沙本构特性模型的建立[J]. 吉林大学学报:工学版,2003,33(1):42-45.
Zhao Qi, Xu Ying, Li Jie, et al. Models for describing the constitutive relationship of taklimakan desert sand under moving vehicle [J]. Journal of Jilin University (Engineering and Technology Edition),2003, 33(1): 42-45.
[1] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[2] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[3] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[4] TIAN Wei-jun, WANG Ji-yue, LI Ming, ZHANG Xing-wang, ZHANG Yong, CONG Qian. Observation of locomotion of water strider towards water strider robot [J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[5] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[7] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[8] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[9] WANG Hong-chao, SHAN Xi-zhuang, YANG Zhi-gang. Numerical simulation of the influence of ground effect simulation on vehicle cooling system experiment in climate wind tunnel [J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[10] WANG Guo-lin, SHEN Fei, ZHOU Hai-chao, YANG Jian. Evaluation of tyre pumping noise and design of low noise structure [J]. 吉林大学学报(工学版), 2017, 47(4): 1024-1031.
[11] TIAN Li-mei, WANG Yang-jun, LI Zi-yuan, SHANG Yan-geng. Development of drag-reduction test system of bionic functional surfaces with internal flow [J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[12] CHEN Dong-hui, LIU Wei, LYU Jian-hua, CHANG Zhi-yong, WU Ting, MU Hai-feng. Bionic design of corn stubble collector based on surface structure of Patinopecten yessoensis [J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[13] PENG Wei, LI Guo-xiang, YAN Wei. Improvement in wall functions for engine radiators [J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[14] KOU Shu-qing, SONG Wei-feng, SHI Zhou. Fracture splitting simulation and defect analysis of 36MnVS4 connecting rod [J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[15] GU Zheng-wei, LYU Meng-meng, ZHANG Wen-xue, LEI Jiao-jiao, XU Hong. Stamping of front-end three-dimensional skin of China electric multiple units [J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!