Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 1111-1120.doi: 10.13229/j.cnki.jdxbgxb20190789

Previous Articles    

Multi⁃cue particle filter tracking based on fuzzy statistical texture features

Jing JIN1(),Jian-wu DANG1,Yang-ping WANG2,Dong SHEN1   

  1. 1.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics & Image Processing,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2019-08-05 Online:2021-05-01 Published:2021-05-07

Abstract:

In order to solve the problem that particle filter tracking algorithm uses single feature with lower robustness and the resample strategy is easy to cause particle degradation and impoverishment, an improved particle filter tracking method based on multi-feature and multi-cue is proposed. First, the Histon histogram that introduces the neighborhood relationship is used to describe the color characteristics of the target. Then a robust fuzzy statistical texture feature is used to express spatial texture information, and it is adaptively fused with regional color features to construct a multi-cue observation model. In the particle filter tracking process, K-means-based particle weight clustering is used for more accurate posterior distribution estimation. In the importance resample stage, high-weight particles are retained while new particles are generated based on the prior distribution of the current target state, which ensures particle diversity and avoids particle degradation. Experiments are carried out on the standard test set. Compared with other tracking algorithms based on particle filter framework, the proposed method obtains higher tracking accuracy and success rate. Compared with other popular tracking algorithms, the proposed method can achieve better tracking results under illumination variation, target deformation and background disturbance scenarios.

Key words: information processing technology, particle filter tracking, Histon histogram, fuzzy statistical texture feature, multi-cue

CLC Number: 

  • TP911.72

Table 1

Comparison of correct classification percentages"

GLCMGLRLMFTV
能量相关性长行程因子行程总数百分比模糊长行程因子RF1模糊行程总数百分比RF2
82.386.687.589.589.892.3

Fig.1

Feature variation statistics of repeatedperturbed pixels in video"

Fig.2

Distribution of particles’ weights"

Fig.3

Process of particles importance resample"

Table 2

Average success rate of 4 algorithms on 11 attribute subsets"

算法IVOCCSVDEFMBFMIPROPROVBCLR平均值
MSR0.4210.6140.4370.5540.4980.5010.4970.3990.4010.5100.4820.483
LPFT0.4540.4320.6590.5680.5650.4920.5080.4530.3850.4420.3510.482
Chaotic_PF0.4890.6100.4750.4980.5100.6040.3780.4050.5620.5530.3870.497
本文0.5680.4310.4650.6710.5420.5480.5400.4510.3980.6520.4510.519

Table 3

Average precision rate of 4 algorithms on 11 attribute subsets"

算法IVOCCSVDEFMBFMIPROPROVBCLR平均值
MSR0.5110.6930.6040.6440.5880.6140.5410.4260.5400.6000.5810.577
LPFT0.5720.5200.7290.6740.6080.5580.6090.5570.5390.5740.4220.578
Chaotic_PF0.5040.6770.5310.5100.6110.6970.4150.5280.6510.5590.4570.558
本文0.6640.5250.5220.7060.6010.6020.6330.5090.5500.7090.5030.594

Fig.4

Time performance comparison offour algorithms"

Fig.5

Tracking results of 5 algorithms on test videos"

Fig.6

Comparison of precision plots"

Fig.7

Comparison of success plots"

1 杨小军. 基于Unscented信息滤波器的分布式目标融合跟踪[J]. 吉林大学学报:工学版, 2015, 45(2): 658-662.
Yang Xiao-jun. Distributed fusion and target tracking based on Unscented information filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 658-662.
2 李娟, 刘晓龙, 卢长刚. 改进的粒子滤波重采样算法[J]. 吉林大学学报:工学版, 2015, 45(6): 2069-2074.
Li Juan, Liu Xiao-long, Lu Chang-gang. Improvement of resampling algorithm of particle filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(6): 2069-2074.
3 Li S, Zhao S, Cheng B, et al. Lightweight particle filter for robust visual tracking[J]. IEEE Access, 2018, 6: 32310-32320.
4 Firouznia M, Faez K, Amindavar H, et al. Chaotic particle filter for visual object tracking[J]. Journal of Visual Communication and Image Representation, 2018, 53: 1-12.
5 Jenkins M D, Barrie P, Buggy T, et al. Selective sampling importance resampling particle filter tracking with multibag subspace restoration[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 264-276.
6 Li J Q, Zhao R H, Chen J L, et al. Target tracking algorithm based on adaptive strong tracking particle filter[J]. Iet Science Measurement & Technology, 2016, 10(7): 704-710.
7 Zhai Y, Song P, Mou Z, et al. Occlusion-aware correlation particle filter target tracking based on RGBD data[J]. IEEE Access, 2018, 6: 50752-50764.
8 Lin Y, Huang D, Huang W. Target tracking algorithm based on an adaptive feature and particle filter[J]. Information, 2018, 9(6): 140-148.
9 Xin S, Yao H, Lu X. Dynamic multi-cue tracking using particle filter[J]. Signal Image & Video Processing, 2014, 8(1): 95-101.
10 Yin M, Jin Z, Sun H, et al. Multi-cue-based CamShift guided particle filter tracking[J]. Expert Systems with Applications, 2011, 38(5): 6313-6318.
11 Walia G S, Kapoor R. Robust object tracking based upon adaptive multi-cue integration for video surveillance[J]. Multimedia Tools & Applications, 2015, 75(23): 15821-15847.
12 Mohabey A, Ray A K. Rough set theory based segmentation of color images[C]∥Fuzzy Information Processing Society, Nafips International Conference of the North American, Atlanta, USA, 2000: 338-342.
13 Rami H, Hamri M, Masmoudi L. Objects tracking in images sequence using local binary pattern(LBP)[J]. International Journal of Computer Applications, 2013, 63(20): 19-23.
14 Graves D, Pedrycz W. Kernel-based fuzzy clustering and fuzzy clustering:a comparative experimental study[J]. Fuzzy Sets and Systems, 2010, 161(4): 522-543.
15 Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1834-1848.
16 Zhang K, Zhang L, Yang M H. Real-Time compressive tracking[C]∥European Conference on Computer Vision, Florence, Italy, 2012: 864-877.
17 Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
18 Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
19 Ji H, Ling H, Wu Y, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]∥IEEE Conference on Computer Vision & Pattern Recognition, Providence, RI, USA, 2012: 1830-1837.
[1] Zai-feng SHI,Jin-zhuo LI,Qing-jie CAO,Hui-long LI,Qi-xing HU. Low⁃dose spectral computer⁃tomography imaging denoising method via a generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1755-1764.
[2] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[3] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[4] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[5] Yan-fen CHENG,Li-juan YAO,Qiao YUAN,Xian-qiao CHEN. Clearing strategy of underwater video image [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 668-677.
[6] Wei ZHANG,Yong HAN,Ming JIN,Xiao-lin QIAO. Toeplitz matrices reconstruction based DOA estimation for coherent signals [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 703-710.
[7] Fu LIU, Mei-jing QUAN, Ke WANG, Yun LIU, Bing KANG, Zhi-wu HAN, Tao HOU. Indoor positioning method based on location fingerprinting of imitating mechanism of scorpion vibration source [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2076-2082.
[8] Xiao-hui YU,Zhi-cheng ZHANG,Xin-bo LI,Xiao-dong SUN. Parameter estimation of exponentially damped sinusoidsbased on state⁃space model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2083-2088.
[9] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[10] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[11] Chao DONG,Jing⁃hong LIU,Fang XU,Ren⁃hao WANG. Fast ship detection in optical remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
[12] Ke⁃yan WANG,Yan HU,Huai WANG,Yun⁃song LI. Image dehazing algorithm by sky segmentation and superpixel⁃level dark channel [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1377-1384.
[13] Lu⁃tao LIU,Na LI. Source detection based on coprime array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 986-993.
[14] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
[15] Yin⁃juan FU,Yong LI,Li⁃qin XU,Kun⁃hui ZHANG. Design and analysis of NLFM⁃Costas RF stealth radar signal [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 994-999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!