Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1377-1384.doi: 10.13229/j.cnki.jdxbgxb20180208

Previous Articles    

Image dehazing algorithm by sky segmentation and superpixel⁃level dark channel

Ke⁃yan WANG1(),Yan HU1,Huai WANG2,Yun⁃song LI1   

  1. 1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
    2. 31668 Troops of the Chinese People's Liberation Army, Xining 810000, China
  • Received:2018-03-09 Online:2019-07-01 Published:2019-07-16

Abstract:

In order to improve the quality of restored images, a single image dehazing approach based on sky segmentation and superpixel-level dark channel model is proposed. First, a simple but effective multi-threshold sky segmentation method is presented, which divides the image into sky area and non-sky area. Second, the atmospheric light is estimated in sky area. Third, the transmission maps of the two types of areas are estimated respectively. For sky area, the transmission is directly estimated by the linear relationship between the dark channel values of clear images and the corresponding hazy images. For non-sky area, the transmission is estimated by superpixel-level dark channel values. Finally, the haze-free image can be restored by the atmospheric scattering model. Experimental results show that, compared with the existing methods, the proposed method can segment the sky more accurately with better adaption of the thresholds, and can estimate the atmospheric light and the transmission map with higher accuracy and efficiency. Moreover, the dehazed images obtained by the proposed method have many advantages such as high contrast, natural color and abundant details.

Key words: information processing technology, image dehazing, transmission, dark channel prior, super?pixel

CLC Number: 

  • TN919.8

Fig.1

Architecture of proposed method"

Fig.2

Flow chart of sky segmentation"

Fig.3

Results of each step of transmission map estimation"

Fig.4

Visual comparison for sky segmentation results"

Fig.5

Comparison for different transmission estimation methods in sky area"

Fig.6

Comparison for dehazed images and atmospheric light estimation results"

Fig.7

Visual comparison for dehazed images"

Table 1

Statistical of quantitative evaluation"

评价指标 文献[3]结果 文献[7]结果 文献[8]结果

本文

结果

新增可见边之比 e

1

2

3

-0.1817

0.1250

0.4887

-0.4355

0.1432

0.3020

0.4645

0.1129

0.3120

0.4842

0.1517

0.4866

可见边梯度均值 r

1

2

3

1.0671

0.8624

1.2806

0.9397

0.6440

1.0272

1.1471

0.9443

1.0975

1.8351

1.3181

1.5168

1 Fattal R . Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1⁃9.
2 Tarel J P , Hautiere N . Fast visibility restoration from a single color or gray level image[C]∥IEEE International Conference on Computer Vision, Xi’an, China, 2009: 2201⁃2208.
3 He Kai⁃ming , Sun Jian , Tang Xiao⁃ou . Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341⁃2353.
4 Zhu Qing⁃song , Jia⁃ming Mai , Shao Ling . A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522⁃3533.
5 Cui Tong , Qu Liang⁃qiong , Tian Jian⁃dong , et al . Single image haze removal based on luminance weight prior[C]∥IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Chengdu, China,2016: 332⁃336.
6 毕笃彦, 眭萍, 何林远, 等 . 基于Color Lines先验的高阶马尔科夫随机场去雾[J]. 电子与信息学报, 2016, 38(9): 2405⁃2409.
Bi Du⁃yan , Sui Ping, He Lin⁃yuan , et al . Higher⁃order Markov random fields defogging based on Color Lines[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2405⁃2409.
7 Bui T M , Tran H N , Kim W , et al . Segmenting dark channel prior in single image dehazing[J]. Electronics Letters, 2014, 50(7): 516⁃518.
8 汪云飞, 刘华伟, 赵搏欣 . 融合超像素的黄金暗通道单幅图像去雾方法[J]. 西安电子科技大学学报, 2017, 44(5): 147⁃152.
Wang Yun⁃fei , Liu Hua⁃wei , Zhao Bo⁃xin . Superpixels⁃based golden dark channel for single image fog removal[J]. Journal of Xidian University, 2017, 44(5): 147⁃152.
9 Zhu Qing⁃song , Wu Di , Xie Yao⁃qin , et al . Quick shift segmentation guided single image haze removal algorithm[C]∥IEEE International Conference on Robotics and Biomimetics, Bali, 2014:113⁃117.
10 郑良缘, 王平, 高颖慧 . 基于超像素分割的图像去雾算法[J]. 重庆理工大学学报, 2015, 29(6): 100⁃106.
Zheng Liang⁃yuan , Wang Ping , Gao Ying⁃hui . Single image dehazing based on superpixels segmentation[J]. Journal of Chongqing University of Technology, 2015, 29(6): 100⁃106.
11 王睿, 李蕊, 廉小亲 . 基于大气多散射模型和超像素分割的图像去雾[J]. 光子学报, 2016, 45(4): 124⁃130.
Wang Rui , Li Rui , Lian Xiao⁃qin . Multiple scattering model based image dehazing with superpixel[J]. Acta Photonica Sinica, 2016, 45(4): 124⁃130.
12 蒋建国, 侯天峰, 齐美彬 . 改进的基于暗原色先验的图像去雾算法[J]. 电路与系统学报, 2011, 16(2): 7⁃12.
Jiang Jian⁃guo , Hou Tian⁃feng , Qi Mei⁃bin . Improved algorithm on image haze removal using dark channel prior[J]. Journal of Circuits and Systems, 2011, 16(2): 7⁃12.
13 Zhu Qing⁃song , Jia⁃ming Mai , Song Zhan , et al . Mean shift⁃based single image dehazing with re⁃refined transmission map[C]∥IEEE International Conference on Systems, Man and Cybernetics, San Diego, USA, 2014: 4058⁃4064.
14 Liu Hai⁃tao , Guo Jin , Sun Chang⁃yin . An improved dehazing method based on the transmission compensation[C]∥World Congress on Intelligent Control and Automation, Guilin, China, 2016: 2732⁃2737.
15 Han Xiao⁃xu , Feng Hong⁃wei , Bu Qi⁃rong , et al . Image dehazing based on two⁃peak channel prior[C]∥IEEE International Conference on Image Processing, Phoenix, 2016: 2236⁃2240.
16 Yuan Hui , Liu Chang⁃chun , Guo Zhi⁃xin , et al . A region⁃wised medium transmission based image dehazing method[J]. IEEE Access, 2017, 5: 1735⁃1742.
17 He Kai⁃ming , Sun Jian , Tang Xiao⁃ou . Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397⁃1409.
18 Wang Ke⁃yan , Zhang Shan⁃shan , Li Yun⁃song . Haze removal via edge weighted pixel⁃to⁃patch fusion[J]. Mobile Networks and Applications, 2017, 22(3): 464⁃477.
19 Achanta R , Shaji A , Smith K . SLIC superpixels compared to state⁃of⁃the⁃art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274⁃2281.
20 Hautière N , Tarel J P , Aubert D , et al . Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology, 2008, 27(2): 87⁃95.
[1] De⁃sheng WEN,Guang⁃dong SUI,Shan⁃heng TIAN,Shao⁃peng WANG,Pei⁃kun FENG,Xiao⁃xue LIU. Leakage/volumetric efficiency analysis and experiment of internal and external meshing gear motors [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1186-1193.
[2] Chao DONG,Jing⁃hong LIU,Fang XU,Ren⁃hao WANG. Fast ship detection in optical remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
[3] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
[4] Lu⁃tao LIU,Na LI. Source detection based on coprime array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 986-993.
[5] Yin⁃juan FU,Yong LI,Li⁃qin XU,Kun⁃hui ZHANG. Design and analysis of NLFM⁃Costas RF stealth radar signal [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 994-999.
[6] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[7] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[8] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[9] JIANG Ji-hai, GE Ze-hua, YANG Chen, LIANG Hai-jian. Differentiator-based discrete variable structure controller for direct drive electro-hydraulic servo system [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1492-1499.
[10] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[11] LIU Guo-zheng, SHI Wen-ku, Chen Zhi-yong. Finite element analysis of transmission error for hypoid gears considering installation error [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[12] LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei. Integrated pulsation micro mixing chip for three-phase flow [J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[13] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[14] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
[15] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!