Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 478-485.doi: 10.13229/j.cnki.jdxbgxb20200053

Previous Articles    

Structural optimization design of large tolerance and multi⁃flexibility lens subassembly

Liu ZHANG1(),Xiao-yi ZHENG1,Fan ZHANG1(),Yu ZHAO2,Shu-yang ZHAO3   

  1. 1.College of Instrument and Electrical Engineering,Jilin University,Changchun 130061,China
    2.College of Mechanical Engineering,Changchun University of Science and Technology,Changchun 130022,China
    3.Research Institute of Telemetry,Beijing 100094,China
  • Received:2020-01-23 Online:2021-03-01 Published:2021-02-09
  • Contact: Fan ZHANG E-mail:zhangliu@jlu.edu.cn;zhangfan1@jlu.edu.cn

Abstract:

The flexible support structure of lens is designed by CAE, and the geometric position parameters are optimized in order to make the surface accuracy of lens meet the requirements of optical system in complex working environment. Firstly, by comparing the commonly used materials and processing technology of the lens support structure, the lens support material is selected, and according to the optical design results, the centering machining technology is used to ensure the straightness of the optical axis. Secondly the suitable flexible structure is chosen and the flexible support according to its central symmetry is designed. Finally, the geometric position of the flexible structure is parameterized, and the structural form of the flexible support is optimized by the integrated optimization method. The experimental results show that the surface shape error (RMS value) of the single lens module is better than λ/50 under three directions of self-weight deformation with temperature ranging from -10 ℃ to 50 ℃, and the first-order resonance frequency of the lens module and the single lens module is no less than 120 Hz. It is verified that the lens can meet the requirements of lens design in the environment of large temperature difference and high frequency vibration.

Key words: flexible support, surface accuracy, finite element simulation, integrated optimization, large temperature difference

CLC Number: 

  • TF303

Table 1

Common material properties"

材料名称密度ρ/(103 kg·m-3弹性模量E/GPa比刚度(E/ρ)/106 m线胀系数α/(10-6·K-1导热率λ/(W·m-1·K)
TC44.4011425.909.107.40
2.706825.2025.00167.00
镁铝合金1.804022.2025.20201.00
铟钢8.9014115.802.6013.70
低体分SiC/Al3.0010033.3016.00155.00
高体分SiC/Al3.0018060.008.00225.00
K9/BK72.518232.677.101.10

Fig.1

Optical design structure"

Fig.2

Lens flexible support structure"

Fig.3

Single lens flexible support"

Fig.4

Parametric grouping of geometric positions"

Fig.5

Flexible pressing ring"

Fig.6

Optimized model"

Fig.7

Single lens assembly model"

Table 2

Optimization results"

变量取值范围初始值优化值
1/(°)60<(A)<12011065
2/(°)60<(B)<120110116
3/mm0.3≤(D1)≤21.50.5
4/mm0.3≤(D2)≤21.50.5
5/mm0.3≤(H1)≤21.50.8
6/mm0.3≤(H2)≤21.50.8
RMSX/nm-0.2415.67
RMSY/nm-0.2495.77
RMSZ/nm-0.448.217
RMS(50 ℃)/nm-28.1879.565
RMS(-10 ℃)/nm-27.6179.464

Fig.8

Fitting nephogram of static analysis"

Table 3

Analysis result of lens surface precision"

工况载荷PV值/nmRMS值/nm
Temp_-1085.579.464
Temp_5081.2579.565
Grav_X29.975.67
Grav_Y30.1565.77
Grav_Z42.6348.217

Fig.9

Lens component model"

Table 4

Modal analysis results of lens subassembly"

序号模态/Hz振动形式
11549.790Move along Z-axis
21582.087Rotate along Y-axis
31582.709Rotate along X-axis
41997.240Move along X-axis
51997.872Move along Y-axis
62278.361Rotate along Z-axis

Fig.10

First six order mode shapes of subassembly"

Fig.11

Lens subassembly"

Table 5

Test result"

项目技术要求检验结果
-10 ℃工况面形精度/nm<12.669.656
50 ℃工况面形精度/nm<12.669.81
X向重力面形精度/nm<12.665.194
Y向重力面形精度/nm<12.665.11
Z向重力面形精度/nm<12.668.468
焦距/mm112.5111.5
F5.65.42
视场角/(°)≥3434.2
分辨率/(p·mm-1)≥200l269l
通过率/%≥7081
1 薛向尧, 高云国. 卫星激光测距中主镜柔性支撑结构设及分析[J]. 电子测量与仪器学报, 2013, 27(8): 696-702.
Xue Xiang-yao, Gao Yun-guo. Design and analysis of a flexible support structure for the primary mirror of SLR[J]. Journal of Electronic Measurement and Instrment, 2013, 27(8): 696-702.
2 卢晓明. 空间大口径望远镜光机结构优化设计[D]. 北京: 中国科学院大学中国科学院上海技术物理研究所, 2018.
Lu Xiao-ming. Optimization design of space large aperture telescope optical machine structure[D]. Beijing: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2018.
3 黎代维. 基于响应面方法的反射镜背部支撑结构优化[D]. 北京: 中国工程物理研究院, 2019.
Li Dai-wei. Optimization design of space large aperture telescope optical machine structure[D]. Beijing: China Academy of Engineering Physics, 2019.
4 柯瑞. 空间反射镜镜片及其支撑结构分析与设计[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2010.
Ke Rui. Analysis and design of space mirror and support structure[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2010.
5 汪奎, 辛宏伟, 曹乃亮, 等. 空间相机快速反射镜的两轴柔性支撑结构设计[J]. 红外与激光工程, 2019, 48(12): 233-240.
Wang Kui, Xin Hong-wei, Cao Nai-liang, et al. Design of two-axis flexible support structure for fast steering mirror in space cameras[J]. Infrared and Laser Engineering, 2019, 48(12): 233-240.
6 孙宝玉. 光学反射镜柔性支撑结构尺寸稳定性分析[J]. 光电工程, 2009, 36(9): 142-145.
Sun Bao-yu. Stability analysis on the dimension of flexible supporting structure of the optical reflector[J]. Opto-Electronic Engineering, 2009, 36(9): 142-145.
7 马磊, 曹佃生, 刘承志. 大口径透镜多点柔性支撑结构设计与分析[J]. 光电工程, 2015, 42(5): 88-94.
Ma Lei, Cao Dian-sheng, Liu Cheng-zhi. Design and analysis on multi-points flexible supporting structure of large-aperture lens[J]. Opto-Electronic Engineering, 2015, 42(5): 88-94.
8 郄永军, 徐勇, 王方鹏.基于多岛遗传-模拟退火算法的气动外形优化[J].飞行力学, 2017, 35(5): 26-30.
Yong-jun Qie, Xu Yong, Wang Fang-peng. Aerodynamic shape optimization based on the hybrid MIGA-SA method[J]. Glight Dynamics, 2017, 35(5): 26-30.
9 王建国, 任建刚. 大口径精密光学元件柔性支撑结构设计和分析[J]. 煤炭技术, 2018, 37(7): 314-316.
Wang Jian-guo, Ren Jian-gang. Design and analysis of large diameter precision optics flexible supporting structure[J]. Coal Technology, 2018, 37(7): 314-316.
10 赵勇志, 曹玉岩, 韩西达, 等. 大口径透镜柔性支撑结构设计与分析[J]. 长春理工大学学报: 自然科学版, 2018, 41(5): 1-7.
Zhao Yong-zhi, Cao Yu-yan, Han Xi-da, et al. Design and mechanical analysis of the flexible mounting structure for the large aperture lens[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(5): 1-7.
11 王乃祥, 惠守文. 航空双波段相机胶粘主次镜柔性支撑结构设计[J]. 仪器仪表学报, 2014, 35():77-81.
Wang Nai-xiang, Hui Shou-wen. The flexible support structure design of the glued primary-secondary mirror of the aviation dual-band camera[J]. Chinese Journal of Scientific Instrument, 2014, 35(Sup.1): 77-81.
12 邵梦旗, 张雷, 李林, 等. 超轻反射镜柔性支撑结构设计与试验[J]. 光子学报, 2019, 48(12): 201-209.
Shao Meng-qi, Zhang Lei, Li Lin, et al. Designand test of flexible supporting structure for ultra-lilght mirror[J]. Acta Photonica Sinica, 2019, 48(12): 201-209.
13 汪纯鹏, 刘波. 大型空间相机柔性支撑结构的设计[J]. 长春理工大学学报: 自然科学版, 2019, 42(5): 1-4.
Wang Chun-peng, Liu Bo. Design of flexure support structure of large-scale space camera[J].Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(5): 1-4.
14 王辰忠, 胡中文, 陈忆, 等. 空间引力波望远镜主反射镜系统的结构设计优化[J/OL]. [2020-01-14].
15 吴欣宇. 基于ANSYS的柔性支撑结构随机振动分析[J]. 机械工程师, 2019(12): 40-42, 44.
Wu Xin-yu. Random vibration analysis of flexible support structure based on ANSYS[J]. Mechanical Engineer, 2019(12): 40-42, 44.
16 丁泉惠, 王森, 黄修长, 等. 基于有限元法和多岛遗传算法的飞轮结构参数优化设计[J]. 噪声与振动控制, 2016, 36(2): 56-60.
Ding Quan-hui, Wang Sen, Huang Xiu-chang, et al. Optimization design of flywheel structural parameters based on finite element analysis and MIGA method[J]. Noise and Vibration Control, 2016, 36(2): 56-60.
[1] Yin-ping LI,Tian-xu JIN,Li LIU. Design and dynamic characteristic simulation of pantograph⁃catenary continuous energy system for pure electric LHD [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 454-463.
[2] Wei-min ZHUANG,Hong-da SHI,Dong-xuan XIE,Guan-nan YANG. Thickness distribution of adhesive layer in dissimilar clinch⁃adhesive hybrid joint with steel and aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 100-106.
[3] MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514.
[4] ZHOU Jie, LUO Yan, WANG Xun, WANG Hui, LI Yang, TAO Ya-ping. Multi-objective optimization of stamping forming process of head based on response surface model [J]. 吉林大学学报(工学版), 2016, 46(1): 205-212.
[5] CHENG Qiang, ZHANG Zhen-dong, GUO Hui, XIE Nai-liu. Electro-magnetic-thermal coupling of GDI injector [J]. 吉林大学学报(工学版), 2015, 45(3): 806-813.
[6] LI Guo-fa, HAN Ming-zuo, SHAN Cui-yun, LIU Jia. Finite element simulation and experiment of magneto-rheological torque servo device [J]. 吉林大学学报(工学版), 2013, 43(05): 1284-1289.
[7] YAN Qing-dong, ZOU Bo, WEI Wei. 3-D integrated optimization of blade forward-curved angle of hydraulic retarder [J]. , 2012, 42(05): 1135-1139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!