Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1518-1527.doi: 10.13229/j.cnki.jdxbgxb20200264

Previous Articles    

Design and experiment of touching-positioning weeding device for inter-row maize (Zea Mays L.)

Gang WANG1(),Hui-li LIU1,Hong-lei JIA2(),Chun-jiang GUO1,Yong-jian CONG1,Ming-hao QU1   

  1. 1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2020-04-22 Online:2021-07-01 Published:2021-07-14
  • Contact: Hong-lei JIA E-mail:gw1988@jlu.edu.cn;jiahl@vip.163.com

Abstract:

In order to achieve the goal of maize inter-row weeding, this study designed the inter-row weeding device which can locate the position and avoid the injury of maize seedlings. This device includes the comb type weeding executing part designed with 65 manganese carbon spring steel wire, the maize seedling positioning part designed with travel switch and the driving part mainly based on servo motor. This inter-row weeding device was tested in June 2019 by the National Agricultural Machinery Quality Inspection Center. The test results show that the average weeding rate was 95.1%, and the average seedling injury rate was 1%. Variance test results show that the plant spacing and the stabbing depth have a significant impact on the weeding rate, and the plant spacing also has a significant impact on the seedling injury rate. The results of this study can provide useful reference for the design of inter-row weeding device in dry field.

Key words: agricultural mechanical engineering, seedling positioning, seedling avoidable weeding control, weeding comb, weeding rate, seedling injury rate, variance test

CLC Number: 

  • S224.1

Fig.1

Maize seedling location and avoidance process"

Fig.2

Schematic diagram of weeding device"

Fig.3

Schematic diagram of avoiding maize seedling"

Fig.4

Deep-into-soil operation of weeding comb"

Fig.5

Maize inter-row weeding device"

Table 1

Selection of main components"

部件名称参数信息
除草梳齿(Weeding comb)直径为3 mm的65Mn碳素弹簧钢丝, 跨度为44 cm,除草梳齿共23根,安装间距为2 cm, 在距离梳齿尖端15 cm处制作1.5圈半径为3 cm的弹簧圈,梳齿尖端磨尖处理。
行程开关(Travel switch)正泰电气股份有限公司,型号为YBLX?ME/8166,操作方式为万向式,动作行程为35°,触发力矩≥0.12 N·m。
伺服电机(Servo motor)武汉保华智科数控设备有限公司,型号为110ST?M06020LB的旋转变压器式编码器的伺服电机,额定功率为1.2 kW,额定扭矩为6 N·m。
减速器(Gear box)武汉保华智科数控设备有限公司,型号为VGF115?10,减速比为1∶8的行星齿轮减速器。
限深轮(Depth wheel)华东橡胶有限公司,直径为15 cm、胎面为5 cm的铁芯聚氨酯万向轮。
联轴器(Coupling)蓝鼎科技有限公司,7075航空铝材,表面氧化,双模片,外径为68 mm,长度为74 mm,内孔12 ~35 mm。
四连杆(Four link)厚度为8 mm的A3钢板钣金成型。
框架(Frame)厚度为5 mm的A3钢板钣金成型。

超声波速度传感器(Ultrasonic speed

sensor)

上海KAISEEN 电子有限公司,型号为NJ1.5?8GM?N,工作电压为3~5.5 V,工作电流<8 mA,射程为600 cm,精度为±1 cm。

工控一体机(Integrated industrial

control computer)

深圳博瑞高通科技有限公司,Intel处理器,2.41 GHz主频,8 GB内存,集成显卡,Windows10操作系统。

Table 2

Root length of common weeds in maize field"

杂草种类拉丁学名根系长度/cm
稗草Echinochloa crusgalli (L.) Beauv.6.6
狗尾草Setaria viridis (L.) Beauv.7.9
马齿苋Portulaca oleracea L.5.3
马唐Digitaria Sanguinalis (L.) Scop.7.8
细柄黍Panicum Psilopodium Trin10.1
萹蓄Polygonum aviculare L.11.2
尼泊尔蓼Polygonum napalerise Meisn13.9
辣子草Galinsoga Parviflora Cav.12.1
刺苋Amaranthus Spinosus L.6.5
大马蓼Polygonum Lapathifolium L.7.3
Chemopodiam album L.9.5
狗牙根Cynodon dactylon (L.) Pers.12.7

Fig.6

Control terminal in cab of weeding machine"

Table 3

Test factors and corresponding levels"

试验因素水平
1234
株距/cm17202326
速度/(km·h-14567
入土深度/cm46810

Table 4

Orthogonal experimental design and corresponding results"

试验号试验因素试验指标
株距/cm速度/(km·h-1入土深度/cm除草率/%伤苗率/%
1237491.71.0
22351097.70.7
3234695.50.9
4265493.40.6
52671097.90.5
6206490.61.3
7205695.51.3
8264896.60.6
9174490.61.3
10175895.91.3
11177693.71.3
12207896.21.2
13266695.70.6
142041097.51.2
15236896.30.9
161761097.01.3
除草率yj1ˉ94.395.0591.575

主次因素:

梳齿入土深度>株距>速度

最有组合为:

梳齿入土深度:10 cm;株距:26 cm;

速度:7 km/h

yj2ˉ94.9595.62595.1
yj3ˉ95.394.996.25
yj4ˉ95.994.87597.525
Rj1.60.755.95
伤苗率yj1ˉ1.311.05

主次因素:

株距>梳齿入土深度>速度

最有组合为:

株距:26 cm;梳齿入土深度:10 cm;

速度:7 km/h

yj2ˉ1.250.9751.025
yj3ˉ0.8751.0251
yj4ˉ0.57510.925
Rj0.7250.050.125

Fig.7

Effecting pictures before and after operation"

Table 5

Multivariate variance test"

试验指标因素平方和自由度均方差Fp
除草率R2=0.980截距1.31611.31645257.4810.000**
株距0.00130.0006.1520.029*
速度0.00030.0001.6880.268
入土深度0.00830.00389.9860.000**
残差0.00060.000
伤苗率R2=0.983截距0.00010.000699.8400.000**
株距0.00030.000111.6000.000**
速度0.00030.0000.4000.758
入土深度0.00030.0002.8000.131
残差0.00060.000

Fig.8

Relationships between weeding rate and experimental factors"

Fig.9

Relationships between seedling injury rate and experimental factors"

1 Cordill C, Grift T E. Design and testing of an intra-row mechanical weeding machine for corn[J]. Biosystems Engineering, 2011, 110(3): 247-252.
2 van der Weide R Y, Bleeker P O, Achten V T J M, et al. Innovation in mechanical weed control in crop rows[J]. Weed Research, 2008, 48(3): 215-224.
3 王洪昌, 涂鸣, 刘念, 等. 苗间除草机械末端执行装置研究现状[J]. 安徽农业科学, 2018, 46(17): 22-26, 29.
Wang Hong-chang, Tu Ming, Liu Nian, et al. Study status of the end-actuator of intra-row weeding machine[J]. Journal of Anhui Agricultural Sciences, 2018, 46(17): 22-26, 29.
4 李江国, 刘占良, 张晋国, 等. 国内外田间机械除草技术研究现状[J]. 农机化研究, 2006,28(10): 14-16.
Li Jiang-guo, Liu Zhan-liang, Zhang Jin-guo, et al. Review of mechanical weeding technique in field at home and abroad[J]. Journal of Agricultural Mechanization Research, 2006, 28(10): 14-16.
5 van der Linden S, Mouazen A M, Anthonis J, et al. Infrared laser sensor for depth measurement to improve depth control in intra-row mechanical weeding[J]. Biosystems Engineering, 2008, 100(3): 309-320.
6 孔汶汶. 基于高光谱成像技术的油菜除草剂胁迫诊断及生理信息检测研究[D]. 杭州: 浙江大学生物与系统工程学院, 2015.
Kong Wen-wen. Herbicide stress diagnosis and physiological information detection of Brassica napus using hyperspectral imaging technology[D]. Hangzhou:Collage of Biological and Systems Engineering, Zhejiang University, 2015.
7 刘慧力, 贾洪雷, 王刚, 等. 基于深度学习与图像处理的玉米秧苗茎秆识别方法与试验[J]. 农业机械学报, 2020, 51(4): 207-215.
Liu Hui-li, Jia Hong-lei, Wang Gang, et al. Methods and experiments of maize (Zea Mays. L.) stems recognition based on deep learning and image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 207-215.
8 Pannacci E, Tei F, Guiducci M. Mechanical weed control in organic winter wheat[J]. Italian Journal of Agronomy, 2017, 12(4): 336-342.
9 张贺, 张喆. 田间除草机械刀具关键技术与装置分析[J]. 农业技术与装备, 2019, 35(11): 90,92.
Zhang He, Zhang Zhe. Key technology and device of the cutting tool of the field weeding machine[J]. Agricultural Technology & Equipment, 2019,35(11): 90,92.
10 王洪昌. 基于鼢鼠爪趾几何结构特征的苗间仿生除草铲设计[D]. 长春:吉林大学生物与农业工程学院, 2015.
Wang Hong-chang. Design of intra-row bionic weeding blade based on geometric characteristic of claws of Myospalax[D]. Changchun: College of Biological and Agricultural Engineering,Jilin University, 2015.
11 Gobor Z, Lammers P S, Martinov M. Development of a mechatronic intra-row weeding system with rotational hoeing tools: theoretical approach and simulation[J]. Computers and Electronics in Agriculture, 2013, 98: 166-174.
12 Cirujeda A, Aibar J, Moreno M M, et al. Effective mechanical weed control in processing tomato: Seven years of results[J]. Renewable Agriculture and Food Systems, 2015, 30(3): 223-232.
13 Fogelberg, Gustavsson. Mechanical damage to annual weeds and carrots by in-row brush weeding[J]. Weed Research, 1999, 39(6): 469-479.
14 Melander B. Optimization of the Adjustment of a Vertical Axis Rotary Brush Weeder for Intra-Row Weed Control in Row Crops[J]. Journal of Agricultural Engineering Research, 1997, 68(1): 39-50.
15 Peruzzi A, Martelloni L, Frasconi C, et al. Machines for non-chemical intra-row weed control in narrow and wide-row crops: a review[J]. Journal of Agricultural Engineering, 2017, 48(2): 57-70.
16 王金峰, 王金武, 闫东伟, 等. 3SCJ-2型水田行间除草机设计与试验[J]. 农业机械学报, 2017, 48(6): 71-78, 202.
Wang Jin-feng, Wang Jin-wu, Yan Dong-wei, et al. Design and experiment of 3scj-2 type row weeding machine for paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 71-78, 202.
17 Melander B, Jabran K, de Notaris C, et al. Inter-row hoeing for weed control in organic spring cereals-Influence of inter-row spacing and nitrogen rate[J]. European Journal of Agronomy, 2018, 101: 49-56.
18 Pérez-Ruíz M, Slaughter D C, Fathallah F A, et al. Co-robotic intra-row weed control system[J]. Biosystems Engineering, 2014, 126: 45-55.
19 周福君, 王文明, 李小利, 等. 凸轮摇杆式摆动型玉米株间除草装置设计与试验[J]. 农业机械学报, 2018, 49(1): 77-85.
Zhou Fu-jun, Wang Wen-ming, Li Xiao-li, et al. Design and experiment of the cam rocker swing intra-row weeding device for maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 77-85.
20 牛春亮, 王金武. 稻田株间除草部件工作机理及除草轨迹试验[J]. 农机化研究, 2017, 39(1): 177-181.
Niu Chun-liang, Wang Jin-wu. Paddy strains between weeding member working mechanism and weeding track test[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 177-181.
21 胡炼, 罗锡文, 严乙桉, 等. 基于爪齿余摆运动的株间机械除草装置研制与试验[J]. 农业工程学报, 2012, 28(14): 10-16.
Hu Lian, Luo Xi-wen, Yan Yi-an, et al. Development and experiment of intra-row mechanical weeding device based on trochoid motion of claw tooth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 10-16.
22 李森森. 中耕期玉米田间避苗除草装置设计及试验研究[D]. 长春: 吉林大学生物与农业工程学院, 2019.
Li Sen-sen. Design and experiment of seedling avoidable weeding control device for intertillage maize[D]. Changchun: College of Biological and Agricultural Engineering,Jilin University, 2019.
23 贾洪雷, 李森森, 王刚, 等. 中耕期玉米田间避苗除草装置设计与试验[J]. 农业工程学报, 2018, 34(7): 15-22.
Jia Hong-lei, Li Sen-sen, Wang Gang, et al. Design and experiment of seedling avoidable weeding control device for intertillage maize (Zea Mays L.)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 15-22.
24 陈其本. 玉米田间杂草及其防除策略[J]. 云南农业科技, 1983, 12(3): 22-26.
Chen Qi-ben. Weeds and their control strategies in maize field[J]. Agricultural Science and Technology of Yunnan, 1983, 12(3): 22-26.
25 Duerinckx K, Mouazen A M, Anthonis J, et al. Effects of spring-tine settings and operational conditions on the mechanical performance of a weed harrow tine[J]. Biosystems Engineering, 2005, 91(1): 21-34.
26 Gealy D, Moldenhauer K, Duke S. Root Distribution and Potential Interactions Between Allelopathic Rice, Sprangletop (Leptochloa spp.), and Barnyardgrass (Echinochloa crus-galli) based on C-13 Isotope Discrimination Analysis[J]. Journal of Chemical Ecology, 2013, 39(2): 186-203.
27 韩豹, 郭畅, 高英玲, 等. 大豆株间除草单体机构及关键部件设计与试验[J]. 农业机械学报, 2020, 51(6): 112-121.
Han Bao, Guo Chang, Gao Ying-ling, et al. Design and experiment of soybean intra-row weeding monomer mechanism and key components[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6):112-121.
28 Kurstjens D A G, Kropff M J, Perdok U D. Method for predicting selective uprooting by mechanical weeders from plant anchorage forces[J]. Weed Science, 2004, 52(1): 123-132.
29 Wang J, Tao G, Liu Y, et al. Field experimental study on pullout forces of rice seedlings and barnyard grasses for mechanical weed control in paddy field[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(6): 1-7.
30 Velicka R, Mockeviciene R, Marcinkeviciene A, et al. The effect of non-chemical weed control on soil biological properties in a spring oilseed rape crop[J]. Zemdirbyste-agriculture, 2017, 104(2): 107-114.
31 Bastiene N, Saulys V, Ciuberkis S. The spread of field horsetail (Equisetum arvense L.) in drained areas of Lithuania: reasons and consequences, and possibilities for its control[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2006, 56(1): 25-30.
[1] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[2] QI Long, LIANG Zhong-wei, JIANG Yu, MA Xu, WU Tao, LU Yu-long, ZHAO Liu-lin. Design and field test of lightweight paddy weeder [J]. 吉林大学学报(工学版), 2016, 46(3): 1004-1012.
[3] QI Long, LIAO Wen-qiang, MA Xu, LIN Jian-heng, OU Zhi-xing, ZHAN Zhi-xun. Design and testing of control system of mini-weeding-robot platform in rice paddy field [J]. 吉林大学学报(工学版), 2013, 43(04): 991-996.
[4] HAN Bao,WU Wen-fu,QUAN Long-zhe. Multi-objective optimization design and simulation on horizontal disk type weeding unit between seedlings [J]. 吉林大学学报(工学版), 2011, 41(03): 692-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!