Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 1034-1039.doi: 10.13229/j.cnki.jdxbgxb20200329

Previous Articles    

Large scale network traffic prediction based on cloud computing and big data analysis

Xiao-hui LI(),Chao-yang CHEN,Hua-wei YI,Bo LI   

  1. School of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou 121001,China
  • Received:2020-05-15 Online:2021-05-01 Published:2021-05-07

Abstract:

In order to obtain the ideal network traffic prediction results, a large-scale network traffic prediction model based on cloud computing and big data analysis is proposed. Firstly, according to the chaos algorithm to describe chaos characteristics of network traffic, the learning sample set is established. Then the support vector machine is introduced to model the randomness characteristics of network traffic, and combined with the massive characteristics of historical data, the cloud computing platform is used to make multiple support vector machines run in parallel. Finally, the comparative test results show that the proposed model improves the accuracy of network traffic prediction, and the modeling efficiency is greatly improved, which can meet the real-time requirements of online network traffic management.

Key words: network management, cloud computing technology, parallel modeling, randomness, learning samples, chaos algorithm

CLC Number: 

  • TP393

Fig.1

Flow of network traffic prediction basedon lease support vector"

Fig.2

Framework of large-scale networktraffic prediction model"

Table 1

Configuration parameters of commonnodes and service nodes of cloudcomputing platform system"

参数服务器节点普通节点
CPUIntel 酷睿i9 9900KAMD Ryzen 5 3500X
RAMDDR 3200 64GBDDR 2400 8 GB
SDD三星970 PRO 512GB NVMe M.2 SSD西部数据WD GREEN 240 GB M.2 SSD
OSWindows 10Windows10

Table 2

Sample network traffic of 10 e-commerce website server ports"

电子商务网站服务器端口编号网络流量的样本数量电子商务网站服务器端口编号网络流量的样本数量
120 000620 000
225 000730 000
325 000830 000
450 000940 000
520 0001050 000

Table 3

Values of network traffic m and τ andparameters C and σ of LSSVM"

网络流量编号单步多步
mτCσmτCσ
11211262.6412.2857259.7618.27
21010246.5010.9258157.0516.97
368167.2716.4464131.5615.28
485284.7711.61811222.7011.36
51013128.2218.011210270.0113.58
659284.2118.631013201.3412.89
788288.0314.5893166.9118.31
859163.0414.21910293.4119.12
967130.5615.44410115.8011.08
101211117.7610.2956207.3816.84

Fig.3

Accuracy comparison of singlestep prediction of network"

Fig.4

Accuracy comparison of multi-stepprediction of network traffic"

Fig.5

Acceleration ratio of the propose network traffic prediction model"

1 Bui N, Widmer J. Data-driven evaluation of anticipatory networking in LTE network[J]. IEEE Trans Mobile Comput, 2018, 17(10):2252-2265.
2 Suh D, Jang S, Han S, et al. Toward highly available and scalable software defined networks for service providers[J]. IEEE Communications Magazine, 2017, 55(4):100-107.
3 Benzaoui N, Estarán J M, Dutisseuil E, et al. CBOSS: bringing traffic engineering inside data center networks[J]. IEEE/OSA Journal of Optical Communications & Networking, 2018, 10(7):117-125.
4 Mohammadi R, Javidan R, Keshtgari M, et al. A novel multicast traffic engineering technique in SDN using TLBO algorithm[J]. Telecommunication Systems, 2018, 68(3):583-592.
5 张蕾,张鹏,孙伟,等. 面向高速网络流量的恶意镜像网站识别方法[J]. 通信学报,2019,40(7):87-94.
Zhang Lei, Zhang Peng, Sun Wei, et al. An identification method of maliciousmirror website for high-speed network traffic[J]. Journal on Communications,2019,40(7):87-94.
6 董书琴,张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报,2020,42(3):695-703.
Dong Shu-qin, Zhang Bin. Network traffic anomaly detection method based on deep feature learning[J]. Journal of Electronics & Information Technology, 2020, 42(3):695-703.
7 徐久强,周洋洋,王进法,等. 基于流时间影响域的网络流量异常检测[J]. 东北大学学报:自然科学版, 2019, 40(1):26-31.
Xu Jiu-qiang, Zhou Yang-yang, Wang Jin-fa, et al. Anomaly detection of network traffic based on flow time influence domain[J]. Journal of Northeastern University (Natural Science), 2019, 40(1):26-31.
8 郭佳,余永斌,杨晨阳. 基于全注意力机制的多步网络流量预测[J]. 信号处理,2019,35(5):758-767.
Guo Jia, Yu Yong-bin, Yang Chen-yang. Multi-step prediction of traffic load with all-attention mechanism[J]. Journal of Signal Processing, 2019, 35(5): 758-767.
9 李松,周亚同,池越,等. 高斯过程混合模型应用于网络流量预测研究[J]. 计算机工程与应用, 2020, 56(5): 186-193.
Li Song, Zhou Ya-tong, Chi Yue, et al. Application of Gaussian process mixture model to network traffic prediction[J]. Computer Engineering and Applications, 2020,56(5):186-193.
10 李校林,吴腾. 基于PF-LSTM网络的高效网络流量预测方法[J]. 计算机应用研究, 2019, 36(12):3833-3836.
Li Xiao-lin, Wu Teng. Efficient network traffic prediction method based on PF-LSTM network[J]. Application Research of Computers, 2019, 36(12): 3833-3836.
11 韩莹,井元伟,金建宇,等. 基于改进黑洞算法优化ESN的网络流量短期预测[J]. 东北大学学报:自然科学版,2018,39(3):311-315.
Han Ying, Jing Yuan-wei, Jin Jian-yu, et al. Network traffic short-term prediction based on echo state network optimized by improved black hole algorithm[J]. Journal of Northeastern University (Natural Science), 2018,39(3):311-315.
12 田中大,李树江,王艳红,等. 高斯过程回归补偿ARIMA的网络流量预测[J]. 北京邮电大学学报, 2017, 40(6):65-73.
Tian Zhong-da, Li Shu-jiang, Wang Yan-hong, et al. Network traffic prediction based on ARIMA with gaussian process regression compensation[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(6):65-73.
13 闫伟,张军. 基于时间序列分析的网络流量异常检测[J].吉林大学学报:理学版,2017,55(5):1249-1254.
Yan Wei, Zhang Jun. Network traffic anomaly detection based on time series analysis[J]. Journal of Jilin University (Science Edition), 2017, 55(5):1249-1254.
14 张杰,白光伟,沙鑫磊,等. 基于时空特征的移动网络流量预测模型[J].计算机科学,2019,46(12):108-113.
Zhang Jie, Bai Guang-wei, Sha Xin-lei, et al. Mobile traffic forecasting model based on spatio-temporal features[J]. Computer Science, 2019, 46(12):108-113.
15 袁开银,魏彬. 相空间重构和极限学习机的网络流量预测模型[J]. 控制工程,2018,25(11):2087-2091.
Yuan Kai-yin, Wei Bin. Network traffic prediction based on phase space reconstruction and ELM[J]. Control Engineering of China, 2018, 25(11):2087-2091.
16 余乐正,柳凤娟,李东海,等. 基于支持向量机的癌细胞经典分泌蛋白与非经典分泌蛋白识别研究[J]. 四川大学学报:自然科学版,2020,57(1):152-156.
Yu Le-zheng, Liu Feng-juan, Li Dong-hai, et al. A study on recognition of classically and non-classically secreted proteins from cancer cells based on support vector machine[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(1):152-156.
[1] GAO Yin-han,WANG Tian-hao,YANG Kai-yu,ZHANG Jun-dong,FAN Kuan-gang,ZHU Yu. Prediction of the dynamic crosstalk of automotive wiring hardness [J]. 吉林大学学报(工学版), 2014, 44(5): 1258-1263.
[2] QIN Gui-he, NAN Yang, CHEN Yun-han, CANG Chen-yang, HE Wei-min. Connection management strategy in media oriented systems transport network [J]. , 2012, 42(04): 963-970.
[3] YANG Zhi-xiao, FAN Yan-feng, SUN Fu-yan. Uncertainty control based on normal cloud model for nodding actions of virtual human [J]. 吉林大学学报(工学版), 2012, 42(02): 476-482.
[4] LIN Dan, WANG Wen-hai. PCs communication based on EPL [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 314-318.
[5] CHEN Bing-Kun, SHEN Gui-Xiang, ZHANG Ying-Zhi, WANG Xiao-Feng, GAO Wen-Li, WANG Zhi-Qiong. Dynamical criticality analysis of CNC machine tool based on random and fuzzy theory [J]. 吉林大学学报(工学版), 2010, 40(增刊): 262-0265.
[6] LIU Xue-jie, LIU Yan-heng, LI Mu-shan, Li Yan,Guan Jian. Dynamic resource allocation of extended policy based network management(PBNM) model in mobile environment [J]. 吉林大学学报(工学版), 2010, 40(01): 176-0182.
[7] MEI Fang,LIU Yan-heng,ZHANG Xu-li,Gu Tian-ye,WANG Wang . Dynamic conflict resolution mechanism for resource
management policy in mobile network
[J]. 吉林大学学报(工学版), 2009, 39(02): 430-0435.
[8] YANG Yuequan, JIANG Zemin, XU De, DAI Xianzhong, TAN Min. Modeling and control for systems based on network [J]. 吉林大学学报(工学版), 2004, (3): 439-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!