Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1482-1489.doi: 10.13229/j.cnki.jdxbgxb20200374

Previous Articles    

Motion estimation for non-cooperative target based on strong tracking cubature Kalman filter

Shao-biao XIE1,2(),Yu ZHANG3,Kai-rui WEN3,Shuo ZHANG3,Zong-ming LIU3(),Nai-ming QI1   

  1. 1.School of Astronautics,Harbin Institute of Technology,Harbin 150090,China
    2.Shanghai Academy of Spaceflight Technology,Shanghai 201109,China
    3.Shanghai Institute of Spaceflight Control Technology,Shanghai 201109,China
  • Received:2020-05-28 Online:2021-07-01 Published:2021-07-14
  • Contact: Zong-ming LIU E-mail:boyish9747@outlook.com;zongmingliu@163.com

Abstract:

In the estimation of the motion state of non-cooperative targets such as aircraft and satellites, due to changes in the features detected by the visual system, the system estimation error will increase or even diverge. This paper proposes a strong tracking volume Kalman filter algorithm (STCKF). When using the CW equation to describe the relative motion of the satellite, considering the eccentric installation of the visual measurement system, a suboptimal fading factor is introduced in the covariance matrix of the STCKF prediction state error, and the gain is adjusted online to ensure that the residual sequences are orthogonal to each other, which guarantee the reliability and stability of the system tracking when the state changes suddenly. The simulation results show that, compared with the standard UKF and CKF algorithms, STCKF can adapt to the time-varying characteristics of the target features, and significantly improve the accuracy and stability of target tracking.

Key words: aerospace engineering and mechanics, strong tracking filter, cubature Kalman filter, vision measurement, non-cooperative target, state estimation

CLC Number: 

  • V19

Fig.1

Relative motion of chaser and target"

Fig.2

Imaging schematic of stereo vision system"

Fig.3

Relative position errors"

Fig.4

Relative velocity errors"

Fig.5

Relative attitude errors"

Fig.6

Relative angular velocity errors"

1 Kelsey J M, Byrne J, Cosgrove M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking[C]∥IEEE Conference on Aerospace,Big Sky, USA,2006:1-20.
2 Cropp A, Palmer P, Underwood C I. Pose estimation of target satellite for proximity operations[C]∥The 14th USU Conference on Small Satellites, Logan, USA, 2000,21:1-7.
3 Arantes G, Rocco E M, da Fonseca I M, et al. Far and proximity maneuvers of a constellation of service satellites and autonomous pose estimation of customer satellite using machine vision [J]. Acta Astronautica, 2010, 66 (9/10): 1493-1505.
4 Priggemeyer M, Dimartino M, Rossmann J. Pose estimation and trajectory calculation for autonomous close-range rendezvous and docking[C]∥IEEE International conference on Advanced Intelligent Mechatronics (AIM), Xiamen, China, 2015: 15-20.
5 Xu A, Namit G. SURF: speeded‐up robust features [C]∥The 9th European Conference on Computer Vision,Beijing, China, 2006:404-417.
6 Oumer N W, Panin G. Tracking and pose estimation of non-cooperative satellite for on-orbit servicing[C]∥ Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kyoto, Japan,2012:379-387.
7 Segal S, Carmi A, Gurfil P. Vision-based relative state estimation of non-cooperative spacecraft under modeling uncertainty[C]∥Proceedings of the IEEE Aerospace Conference, New York, USA, 2011:1-8.
8 刘宗明, 曹姝清, 张宇, 等. 非合作航天器逆深度参数化姿态估计[J]. 光学精密工程, 2017, 25(2): 451-459.
Liu Zong-ming, Cao Shu-qing, Zhang Yu. Inverse depth parametrization for attitude estimation of a non-cooperative spacecraft[J]. Optics and Precision Engineering, 2017, 25(2): 451-459.
9 刘宗明, 张宇, 卢山, 等. 非合作旋转目标闭环检测与位姿优化[J]. 光学精密工程, 2017, 25(4): 1036-1043.
Liu Zong-ming, Zhang Yu, Lu Shan. Loop detection and pose optimization for a rotating non-cooperative target[J]. Optics and Precision Engineering, 2017, 25(4): 1036-1043.
10 Maessen D, Gill E. Relative state estimation and observability analysis for formation flying satellites[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 321-326.
11 Julier S J, Uhlmann J K, Durrant-Whyte H F. New approach for filtering nonlinear systems[C]∥Proceedings of the American Control Conference, Seattle,USA,1995: 1628-1632.
12 Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison of EKF and UKF for spacecraft localization via angle measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 75-84.
13 Burguera A, Oliver G, Gonzalez Y. Scan-based SLAM with trajectory correction in underwater environment[C]∥IEEE/RSJ International Conference on Inlelligent Robots and Systems, Taipei ,China, 2010:2546-2551.
14 Mallios A, Ridao P, Carreras M, et al. Navigating and mapping with the SPARUS AUV in natural and unstructured underwater enviroment[C]∥Processdings of the Oceans MTS/IEEE, Kona,USA, 2011:201-204.
15 Wang H J, Li C, Lv H L, et al. Research on com-pressed EKF based SLAM algorithm for unmanned underwater vehicle[C]∥Proceedings of 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, USA, 2012:402-407.
16 He B, Zang H J, Li C H, et al. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing[J]. Sensors, 2011, 11(11):10598-10980.
17 Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
18 Segal S, Gurfil P. Effect of kinematic rotation translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050.
19 Kim S G, Crassidis J L, Cheng Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 133-143.
[1] Jing LI,Qiu-jun SHI,Liang HONG,Peng LIU. Commercial vehicle ESC neural network sliding mode control based on vehicle state estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1545-1555.
[2] Jing LI,Qiu⁃jun SHI,Peng LIU,Ya⁃wei HU. Neural network sliding mode control of commercial vehicle ABS based on longitudinal vehicle speed estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1017-1025.
[3] JIA Hong-fei, LI Yong-xing, YANG Li-li. Expressway traffic joint control based on traffic state estimation [J]. 吉林大学学报(工学版), 2017, 47(1): 76-81.
[4] SONG Chuan-xue, XIAO Feng, LIU Si-han, LI Shao-kun, DUAN Liang, PENG Si-lun. State estimation of electric vehicle with in-wheel motors based on UKF [J]. 吉林大学学报(工学版), 2016, 46(2): 333-339.
[5] LIU Yu,HE You,WANG Hai-peng,DONG Kai. Augmented target tracking algorithm based on SRCKF for joint estimation of state and sensor systematic error [J]. 吉林大学学报(工学版), 2015, 45(1): 314-321.
[6] GAO Zhen-hai, WANG Jun, TONG Jing, LI Hong-jian, GUO Zhang-yong, LOU Fang-ming. Target motion state estimation for vehicle-borne millimeter-wave radar [J]. 吉林大学学报(工学版), 2014, 44(6): 1537-1544.
[7] YANG Lan, ZHAO Xiang-mo, HUI Fei, ZHOU Jing-mei, SHI Xin. Invasive weed optimized particle filter [J]. 吉林大学学报(工学版), 2013, 43(04): 1070-1075.
[8] LIU Chang-Ying, GAO Le, GAO Yin-Han, CHE Ren-Sheng. Measurement of coordinates by single camera vision [J]. 吉林大学学报(工学版), 2010, 40(05): 1278-1282.
[9] TIAN Cheng-wei,ZONG Chang-fu,WANG Xiang,JIANG Guo-bin,HE Lei. Sensor fault tolerance control method for steer-by-wire car [J]. 吉林大学学报(工学版), 2010, 40(01): 6-0012.
[10] LI Li-tao, YANG Xu, LI Shun-li . Mid-range relative navigation method for noncooperative target satellite
[J]. 吉林大学学报(工学版), 2008, 38(04): 986-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!