Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 27-38.doi: 10.13229/j.cnki.jdxbgxb20200509
Previous Articles Next Articles
Tao XU1,2(),Ke MA1,2,Cai-hua LIU1,2()
CLC Number:
1 | Fan L, Wang Z, Cail B, et al. A survey on multiple object tracking algorithm[C]∥IEEE International Conference on Information and Automation(ICIA), Ningbo, China, 2016: 1855-1862. |
2 | Chu Q, Ouyang W, Li H, et al. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4836-4845. |
3 | Son J, Baek M, Cho M, et al. Multi-object tracking with quadruplet convolutional neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 5620-5629. |
4 | Fang K, Xiang Y, Li X, et al. Recurrent autoregressive networks for online multi-object tracking[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 2018: 466-475. |
5 | Kim C, Li F, Rehg J M. Multi-object tracking with neural gating using bilinear lstm[C]∥European Conference on Computer Vision(ECCV), Munich,Germany,2018: 208-224. |
6 | Xu Y, Zhou X, Chen S, et al. Deep learning for multiple object tracking: a survey[J]. IET Computer Vision, 2019, 13(4): 355-368. |
7 | Sun Z, Chen J, Liang C, et al. A survey of multiple pedestrian tracking based on tracking-by-detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020(99):1-10. |
8 | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
9 | Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Amsterdam, Netherlands, 2016: 21-37. |
10 | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA,2016: 779-788. |
11 | Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]∥IEEE International Conference on Image Processing (ICIP), Phoenix, USA,2016: 3464-3468. |
12 | Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥ Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, 2016: 36-42. |
13 | Kieritz H, Hubner W, Arens M. Joint detection and online multi-object tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA,2018: 1540-1548. |
14 | Dawei Z, Hao F, Liang X, et al. Multi-object tracking with correlation filter for autonomous vehicle[J]. Sensors, 2018, 18(7): 2004-2011. |
15 | Redmon J, Farhadi A. YOLOv3:an incremental improvement[EB/OL]. [2018-04-08]. |
16 | Jiang M, Hai T, Pan Z, et al. Multi-agent deep reinforcement learning for multi-object tracker[J]. IEEE Access, 2019, 7: 32400-32407. |
17 | He M, Luo H, Hui B, et al. Fast online multi-pedestrian tracking via integrating motion model and deep appearance model[J]. IEEE Access, 2019, 7: 89475-89486. |
18 | Zhou Q, Zhong B, Zhang Y, et al. Deep alignment network based multi-person tracking with occlusion and motion reasoning[J]. IEEE Transactions on Multimedia, 2018, 21(5): 1183-1194. |
19 | Ku J, Mozifian M, Lee J, et al. Joint 3d proposal generation and object detection from view aggregation[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1-8. |
20 | Baser E, Balasubramanian V, Bhattacharyya P, et al. Fantrack: 3d multi-object tracking with feature association network[C]∥ IEEE Intelligent Vehicles Symposium(IV), Paris, France, 2019: 1426-1433. |
21 | Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2d pose estimation using part affinity fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 1302-1310. |
22 | Ristani E, Tomasi C. Features for multi-target multi-camera tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA,2018: 6036-6046. |
23 | Kim C, Li F, Ciptadi A, et al. Multiple hypothesis tracking revisited[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4696-4704. |
24 | Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 3645-3649. |
25 | Mahmoudi N, Ahadi S M, Rahmati M. Multi-target tracking using CNN-based features: CNNMTT[J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096. |
26 | Sheng H, Zhang Y, Chen J, et al. Heterogeneous association graph fusion for target association in multiple object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(11): 3269-3280. |
27 | Chen L, Ai H, Shang C, et al. Online multi-object tracking with convolutional neural networks[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 645-649. |
28 | Peng J, Wang C. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[EB/OL]. [2020-10-13]. |
29 | He Z, Li J, Liu D, et al. Tracking by animation: unsupervised learning of multi-object attentive trackers[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA,2019: 1318-1327. |
30 | Brasó G, Leal-Taixé L. Learning a neural solver for multiple object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6247-6257. |
31 | Porzi L, Hofinger M, Ruiz I, et al. Learning multi-object tracking and segmentation from automatic annotations[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6846-6855. |
32 | Kim M, Alletto S. Similarity mapping with enhanced siamese network for multi-object tracking[EB/OL]. [2020-10-13]. |
33 | Lee S, Kim E. Multiple object tracking via feature pyramid Siamese networks[J]. IEEE Access, 2018, 7: 8181-8194. |
34 | Leal-Taixé L, Canton-Ferrer C, Schindler K. Learning by tracking: siamese CNN for robust target association[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA,2016: 418-425. |
35 | Zhu J, Yang H, Liu N, et al. Online multi-object tracking with dual matching attention networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Munich,Germany, 2018: 366-382. |
36 | Tang S, Andriluka M, Andres B, et al. Multiple people tracking by lifted multicut and person re-identification[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 3539-3548. |
37 | Yin J, Wang W, Meng Q, et al. A unified object motion and affinity model for online multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6768-6777. |
38 | Lu Y, Lu C, Tang C K. Online video object detection using association LSTM[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2344-2352. |
39 | Sadeghian A, Alahi A, Savarese S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 300-311. |
40 | Chen L, Peng X, Ren M. Recurrent metric networks and batch multiple hypothesis for multi-object tracking[J]. IEEE Access, 2019, 7: 3093-3105. |
41 | Rosello P, Kochenderfer M J. Multi-agent reinforcement learning for multi-object tracking[C]∥Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 2018: 1397-1404. |
42 | Munkres J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38. |
43 | Xu Y, Osep A, Ban Y, et al. How to train your deep multi-object tracker[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6787-6796. |
44 | Milan A, Rezatofighi S H, Dick A, et al. Online multi-target tracking using recurrent neural networks[C]∥ Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA,2017:4225-4232. |
45 | Yoon K, Kim D Y, Yoon Y C, et al. Data association for multi-object tracking via deep neural networks[J]. Sensors, 2019, 19(3): 559-574. |
46 | Chu P, Fan H, Tan C C, et al. Online multi-object tracking with instance-aware tracker and dynamic model refreshment[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, USA, 2019: 161-170. |
47 | Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 2005, 52(1): 7-21. |
48 | Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'06), New York, USA,2006: 951-958. |
49 | Keni B, Rainer S. Evaluating multiple object tracking performance: The CLEAR MOT Metrics[J]. Eurasip Journal on Image & Video Processing, 2008 (1): 246309. |
50 | Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17-35. |
51 | Leal-Taixé L, Milan A, Reid I, et al. Motchallenge 2015: Towards a benchmark for multi-target tracking[EB/OL]. [2015-04-08]. |
52 | Leal-Taixé L, Milan A, Reid I, et al. MOT16: A benchmark for multi-object tracking[EB/OL]. [2016-05-03]. |
53 | Felzenszwalb P F, Girshick R B, Mcallester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010, 32(9): 1627-1645. |
54 | Yang F, Choi W, Lin Y. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas,USA, 2016:2129-2137. |
55 | Dendorfer P, Rezatofighi H, Milan A, et al. CVPR19 tracking and detection challenge: how crowded can it get?[EB/OL]. [2019-06-10]. |
56 | Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,2012: 3354-3361. |
57 | Ferryman J, Shahrokni A. Pets2009: dataset and challenge[C]∥Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Snowbird, USA,2009: 1-6. |
58 | Andriluka M, Roth S, Schiele B. Monocular 3d pose estimation and tracking by detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA,2010: 623-630. |
59 | Wen L, Du D, Cai Z, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907. |
60 | Leal-Taixé L, Milan A. Tracking the trackers: an analysis of the state of the art in multiple object tracking[EB/OL]. [2020-10-13]. |
61 | Yoon K, Song Y, Jeon M. Multiple hypothesis tracking algorithm for multi-target multi-camera tracking with disjoint views[J]. IET Image Processing, 2018, 12(7): 1175-1184. |
62 | Liang Y, Zhou Y. Multi-camera tracking exploiting person re-id technique[C]∥The 24th International Conference on Neural Information Processing, Guangzhou, China, 2017: 397-404. |
63 | Yoo H, Kim K, Byeon M, et al. Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(3): 454-469. |
64 | Tang Z, Naphade M, Liu M Y, et al. Cityflow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8797-8806. |
65 | Imani Y, Teyfouri N, Ahmadzadeh M R, et al. A new method for multiple sperm cells tracking[J]. Journal of Medical Signals & Sensors, 2014, 4(1): 35-42. |
66 | Meirovitch Y, Mi L, Saribekyan H, et al. Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8425-8435. |
67 | Mittek M, Psota E T, Pérez L C, et al. Health monitoring of group-housed pigs using depth-enabled multi-object tracking[C]∥Proceedings of International Conference on Pattern Recognition (ICPR), Cancun, Mexico,2016: 9-12. |
[1] | Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18. |
[2] | Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113. |
[3] | Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044. |
[4] | Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667. |
[5] | Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675. |
[6] | Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427. |
[7] | CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628. |
[8] | GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[9] | YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985. |
[10] | DONG Qiang, LIU Jing-hong, ZHOU Qian-fei. Improved SURF algorithm used in image mosaic [J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652. |
[11] | XU Yan-yan, CHEN Hui, LIU Jia-ju, YUAN Jin-zhao. Cell processor stereo matching parallel computation [J]. 吉林大学学报(工学版), 2017, 47(3): 952-958. |
[12] | YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058. |
[13] | SUN Ting, QI Ying-chun, GENG Guo-hua. Moving object detection algorithm based on frame difference and background subtraction [J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329. |
[14] | XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998. |
[15] | LIU Hong,SUN Shuang-zi,WANG Qing-yuan,LI Yan-zhong. PSO based feature extraction method for analog circuit fault information [J]. 吉林大学学报(工学版), 2015, 45(2): 675-680. |
|