Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 27-38.doi: 10.13229/j.cnki.jdxbgxb20200509

Previous Articles     Next Articles

Multi object pedestrian tracking based on deep learning

Tao XU1,2(),Ke MA1,2,Cai-hua LIU1,2()   

  1. 1.School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China
    2.Information Technology Research Base of Civil Aviation Administration of China,Civil Aviation University of China,Tianjin 300300,China
  • Received:2020-07-06 Online:2021-01-01 Published:2021-01-20
  • Contact: Cai-hua LIU E-mail:txu@cauc.edu.cn;chliu@cauc.edu.cn

Abstract:

A survey of the mainstream multi object tracking methods based on tracking by detection in recent years is carried out. Then, the concept of detection based multi object tracking is introduced. The multi object tracking methods are summarized in object detection, feature extraction and data association & tracking. The performance of some multi object tracking(MOT) methods are compared and evaluated on the MOTChallenge series datasets. The future development direction of multi object tracking is discussed.

Key words: computer vision, multi object tracking, object detection, feature extraction, data association

CLC Number: 

  • TP391

Fig.1

Basic framework of tracking by detection"

Fig.2

Faster R-CNN network structure"

Fig.3

YOLO network structure"

Fig.4

Siamese network structure"

Fig.5

Bilinear LSTM network structure"

Table 1

Evaluation metrics for multi object tracking"

度量名称期望分值简述
MOTA↑100%多目标跟踪准确度
MOTP↑100%多目标跟踪精度
MT↑100%最多跟踪的目标
ML↓0%最少丢失的目标
Frag↓0跟踪被打断的总次数
IDSW↓0身份切换的总次数
FP↓0错误正样本数量
FN↓0错误负样本数量
IDF1↑100%识别F值
Hz↑正无穷处理速度(以FPS为单位,但不包括检测器的处理速度)

Table 2

Video sequences and their main properties included in MOT datasets"

数据集视频来源长度轨迹数量FPS相机状况视点密度天气
MOT2015TUD?Crossing2011325静止水平5.5多云
PETS2009?S2L2436427静止22.1多云
ETH?Crossing2192614移动4.9多云
ADL?Rundle?15003230移动水平18.6
KITTI?162091710静止水平8.1
MOT2016MOT16?014502330静止水平14.2多云
MOT16?03150014830静止69.7夜晚
MOT16?06119422114移动9.7
MOT16?129008630移动水平9.2室内
MOT2017MOT17?014502430静止水平14.3
MOT17?03150014830静止69.8夜晚
MOT17?06119422214移动水平9.9

Table 3

Evaluation results of general metrics of MOT15's multi object tracking methods"

方法MOTAMOTPFPFNIDSW
RNN_LSTM [44]19.071.011 57836 7061 490
MARLMOT[41]27.772.56 09221 976767
SiameseCNN[38]29.071.25 16037 798639
MHT_DAM[23]32.471.89 06432 060435
QuadMOT[3]33.873.47 89832 061703
STAM[2]34.370.55 15434 848348
RAN[4]35.170.96 77132 717381
AMIR[39]37.671.77 93329 3971026
AP_HWDPL[27]38.572.64 00533 203586
MPN[30]51.576.07 62021 780375

Table 4

Evaluation results of general metrics of MOT16's multi object tracking methods"

方法MOTAMOTPFPFNIDSW
DAN[18]40.874.415 14391 7921 051
MHT_bLSTM[5]42.175.911 63793 172753
QuadMOT[3]44.176.46 38894 775745
MHT_DAM[23]45.876.36 41291 758590
STAM[2]46.074.96 89591 117473
DMAN[35]46.173.87 90989 874532
AMIR[39]47.275.82 68192 856774
LMP[36]48.879.06 65486 245481
MPN[30]58.678.94 94970 252354
DeepSORT[24]61.479.112 85256 668781
NSH[17]63.978.59 82955 000913
POI[12]66.179.55 06155 914805
CTracker[28]67.678.48 93448 3051897
1 Fan L, Wang Z, Cail B, et al. A survey on multiple object tracking algorithm[C]∥IEEE International Conference on Information and Automation(ICIA), Ningbo, China, 2016: 1855-1862.
2 Chu Q, Ouyang W, Li H, et al. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4836-4845.
3 Son J, Baek M, Cho M, et al. Multi-object tracking with quadruplet convolutional neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 5620-5629.
4 Fang K, Xiang Y, Li X, et al. Recurrent autoregressive networks for online multi-object tracking[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 2018: 466-475.
5 Kim C, Li F, Rehg J M. Multi-object tracking with neural gating using bilinear lstm[C]∥European Conference on Computer Vision(ECCV), Munich,Germany,2018: 208-224.
6 Xu Y, Zhou X, Chen S, et al. Deep learning for multiple object tracking: a survey[J]. IET Computer Vision, 2019, 13(4): 355-368.
7 Sun Z, Chen J, Liang C, et al. A survey of multiple pedestrian tracking based on tracking-by-detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020(99):1-10.
8 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
9 Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Amsterdam, Netherlands, 2016: 21-37.
10 Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA,2016: 779-788.
11 Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]∥IEEE International Conference on Image Processing (ICIP), Phoenix, USA,2016: 3464-3468.
12 Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥ Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, 2016: 36-42.
13 Kieritz H, Hubner W, Arens M. Joint detection and online multi-object tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA,2018: 1540-1548.
14 Dawei Z, Hao F, Liang X, et al. Multi-object tracking with correlation filter for autonomous vehicle[J]. Sensors, 2018, 18(7): 2004-2011.
15 Redmon J, Farhadi A. YOLOv3:an incremental improvement[EB/OL]. [2018-04-08].
16 Jiang M, Hai T, Pan Z, et al. Multi-agent deep reinforcement learning for multi-object tracker[J]. IEEE Access, 2019, 7: 32400-32407.
17 He M, Luo H, Hui B, et al. Fast online multi-pedestrian tracking via integrating motion model and deep appearance model[J]. IEEE Access, 2019, 7: 89475-89486.
18 Zhou Q, Zhong B, Zhang Y, et al. Deep alignment network based multi-person tracking with occlusion and motion reasoning[J]. IEEE Transactions on Multimedia, 2018, 21(5): 1183-1194.
19 Ku J, Mozifian M, Lee J, et al. Joint 3d proposal generation and object detection from view aggregation[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1-8.
20 Baser E, Balasubramanian V, Bhattacharyya P, et al. Fantrack: 3d multi-object tracking with feature association network[C]∥ IEEE Intelligent Vehicles Symposium(IV), Paris, France, 2019: 1426-1433.
21 Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2d pose estimation using part affinity fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 1302-1310.
22 Ristani E, Tomasi C. Features for multi-target multi-camera tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA,2018: 6036-6046.
23 Kim C, Li F, Ciptadi A, et al. Multiple hypothesis tracking revisited[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4696-4704.
24 Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 3645-3649.
25 Mahmoudi N, Ahadi S M, Rahmati M. Multi-target tracking using CNN-based features: CNNMTT[J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096.
26 Sheng H, Zhang Y, Chen J, et al. Heterogeneous association graph fusion for target association in multiple object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(11): 3269-3280.
27 Chen L, Ai H, Shang C, et al. Online multi-object tracking with convolutional neural networks[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 645-649.
28 Peng J, Wang C. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[EB/OL]. [2020-10-13].
29 He Z, Li J, Liu D, et al. Tracking by animation: unsupervised learning of multi-object attentive trackers[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA,2019: 1318-1327.
30 Brasó G, Leal-Taixé L. Learning a neural solver for multiple object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6247-6257.
31 Porzi L, Hofinger M, Ruiz I, et al. Learning multi-object tracking and segmentation from automatic annotations[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6846-6855.
32 Kim M, Alletto S. Similarity mapping with enhanced siamese network for multi-object tracking[EB/OL]. [2020-10-13].
33 Lee S, Kim E. Multiple object tracking via feature pyramid Siamese networks[J]. IEEE Access, 2018, 7: 8181-8194.
34 Leal-Taixé L, Canton-Ferrer C, Schindler K. Learning by tracking: siamese CNN for robust target association[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA,2016: 418-425.
35 Zhu J, Yang H, Liu N, et al. Online multi-object tracking with dual matching attention networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Munich,Germany, 2018: 366-382.
36 Tang S, Andriluka M, Andres B, et al. Multiple people tracking by lifted multicut and person re-identification[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 3539-3548.
37 Yin J, Wang W, Meng Q, et al. A unified object motion and affinity model for online multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6768-6777.
38 Lu Y, Lu C, Tang C K. Online video object detection using association LSTM[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2344-2352.
39 Sadeghian A, Alahi A, Savarese S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 300-311.
40 Chen L, Peng X, Ren M. Recurrent metric networks and batch multiple hypothesis for multi-object tracking[J]. IEEE Access, 2019, 7: 3093-3105.
41 Rosello P, Kochenderfer M J. Multi-agent reinforcement learning for multi-object tracking[C]∥Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 2018: 1397-1404.
42 Munkres J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38.
43 Xu Y, Osep A, Ban Y, et al. How to train your deep multi-object tracker[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6787-6796.
44 Milan A, Rezatofighi S H, Dick A, et al. Online multi-target tracking using recurrent neural networks[C]∥ Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA,2017:4225-4232.
45 Yoon K, Kim D Y, Yoon Y C, et al. Data association for multi-object tracking via deep neural networks[J]. Sensors, 2019, 19(3): 559-574.
46 Chu P, Fan H, Tan C C, et al. Online multi-object tracking with instance-aware tracker and dynamic model refreshment[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, USA, 2019: 161-170.
47 Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 2005, 52(1): 7-21.
48 Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'06), New York, USA,2006: 951-958.
49 Keni B, Rainer S. Evaluating multiple object tracking performance: The CLEAR MOT Metrics[J]. Eurasip Journal on Image & Video Processing, 2008 (1): 246309.
50 Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17-35.
51 Leal-Taixé L, Milan A, Reid I, et al. Motchallenge 2015: Towards a benchmark for multi-target tracking[EB/OL]. [2015-04-08].
52 Leal-Taixé L, Milan A, Reid I, et al. MOT16: A benchmark for multi-object tracking[EB/OL]. [2016-05-03].
53 Felzenszwalb P F, Girshick R B, Mcallester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010, 32(9): 1627-1645.
54 Yang F, Choi W, Lin Y. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas,USA, 2016:2129-2137.
55 Dendorfer P, Rezatofighi H, Milan A, et al. CVPR19 tracking and detection challenge: how crowded can it get?[EB/OL]. [2019-06-10].
56 Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,2012: 3354-3361.
57 Ferryman J, Shahrokni A. Pets2009: dataset and challenge[C]∥Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Snowbird, USA,2009: 1-6.
58 Andriluka M, Roth S, Schiele B. Monocular 3d pose estimation and tracking by detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA,2010: 623-630.
59 Wen L, Du D, Cai Z, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
60 Leal-Taixé L, Milan A. Tracking the trackers: an analysis of the state of the art in multiple object tracking[EB/OL]. [2020-10-13].
61 Yoon K, Song Y, Jeon M. Multiple hypothesis tracking algorithm for multi-target multi-camera tracking with disjoint views[J]. IET Image Processing, 2018, 12(7): 1175-1184.
62 Liang Y, Zhou Y. Multi-camera tracking exploiting person re-id technique[C]∥The 24th International Conference on Neural Information Processing, Guangzhou, China, 2017: 397-404.
63 Yoo H, Kim K, Byeon M, et al. Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(3): 454-469.
64 Tang Z, Naphade M, Liu M Y, et al. Cityflow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8797-8806.
65 Imani Y, Teyfouri N, Ahmadzadeh M R, et al. A new method for multiple sperm cells tracking[J]. Journal of Medical Signals & Sensors, 2014, 4(1): 35-42.
66 Meirovitch Y, Mi L, Saribekyan H, et al. Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8425-8435.
67 Mittek M, Psota E T, Pérez L C, et al. Health monitoring of group-housed pigs using depth-enabled multi-object tracking[C]∥Proceedings of International Conference on Pattern Recognition (ICPR), Cancun, Mexico,2016: 9-12.
[1] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[2] Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113.
[3] Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
[4] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[5] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[6] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
[7] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[8] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[9] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
[10] DONG Qiang, LIU Jing-hong, ZHOU Qian-fei. Improved SURF algorithm used in image mosaic [J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[11] XU Yan-yan, CHEN Hui, LIU Jia-ju, YUAN Jin-zhao. Cell processor stereo matching parallel computation [J]. 吉林大学学报(工学版), 2017, 47(3): 952-958.
[12] YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[13] SUN Ting, QI Ying-chun, GENG Guo-hua. Moving object detection algorithm based on frame difference and background subtraction [J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.
[14] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[15] LIU Hong,SUN Shuang-zi,WANG Qing-yuan,LI Yan-zhong. PSO based feature extraction method for analog circuit fault information [J]. 吉林大学学报(工学版), 2015, 45(2): 675-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!