Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 712-719.doi: 10.13229/j.cnki.jdxbgxb20200839

Previous Articles    

Application of canny algorithm based on adaptive threshold in MR Image edge detection

Jian LI1,2(),Kong-yu LIU1,Xian-sheng REN3(),Qi XIONG1,Xue-feng DOU1   

  1. 1.College of Information Technology,Jilin Agricultural University,Changchun 130118,China
    2.Jilin Province Bioinformatics Research Center,Jilin University,Changchun 130118,China
    3.Department of Orthopedic Surgery,Second Hospital of Jilin University,Changchun 130041,China
  • Received:2020-11-02 Online:2021-03-01 Published:2021-02-09
  • Contact: Xian-sheng REN E-mail:liemperor@163.com;antren@163.com

Abstract:

As a classic multi-level optimization algorithm, the Canny algorithm is widely used in MRI edge detection. MRI has the limitations of uneven gray density and low contrast. This paper uses lumbar disc MRI as an example to propose an improved Canny algorithm for optimization in edge detection. First, the image contrast is enhanced, and on this basis, the median filtering is introduced to effectively process impulse noise for preprocessing. Then, for the problem of insufficient edge extraction accuracy, the gradient direction template is increased to obtain the gradient amplitude and direction. For the excessive number of false edges and edge discontinuities, the gradient intensity information calculation method is used to achieve threshold adaptation. Finally, the image enhancement is performed again through the histogram normalization. This paper uses four evaluation criteria of PSNR, SSIM, MSE and algorithm running time to verify the traditional algorithm, the existing algorithm and the improved algorithm in this paper. The results show that the improved Canny algorithm significantly improves the accuracy of MRI detection, effectively reduces the false edges, and it is adaptive. The results of this article have certain reference significance for MRI in medical image processing.

Key words: image processing, edge detection, Canny algorithm, MR image

CLC Number: 

  • TP391.41

Fig.1

Canny algorithm flow chart"

Fig.2

Traditional Canny algorithm edge graph"

Fig. 3

Improved Canny algorithm flow chart"

Fig.4

Denoising result graph with different filters"

Fig.5

Comparison of different adaptive threshold algorithms"

Fig.6

Traditional Canny algorithm and edge extraction graph of this algorithm"

Fig.7

Gamma transform comparison chart"

Fig.8

Histogram normalization results"

Fig.9

Comparison between traditional algorithm and improved Canny algorithm"

Fig.10

Comparison between traditional Canny algorithm and improved Canny algorithm"

Table 1

Performance evaluation comparison table"

算法

峰值信噪比

(PSNR)

均方误差

(MSE)

结构相似性

(SSIM)

运行时间/s
Sobel算子11.3523523.310.60000.364
Laplacian算子11.4284679.290.51000.342
Otsu12.2413715.310.44000.447
传统Canny11.0315128.440.43000.064
文献[1]11.3076058.410.49290.331
文献[19]10.5826250.430.43108.288
本文13.5682860.170.75000.196
1 李健, 李赫宇, 姚汝婧, 等. 基于均值滤波的改进Canny算法在核磁共振图像边缘检测中的应用[J]. 吉林大学学报: 工学版, 2016, 46(5): 1704-1709.
Li Jian, Li He-yu, Yao Ru-jing,et al. Application of improved canny algorithm based on mean filtering in MRI Image edge detection[J].Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1704-1709.
2 吴倩倩, 周蕾蕾, 赵紫婷, 等. 图像分割在肿瘤放射治疗中的发展与应用[C]∥中国医学装备协会, 北京, 2020: 44-48.
3 宋志刚, 王龙山, 陈向伟. 利用数字图像处理技术检测锥螺纹[J]. 吉林大学学报: 工学版, 2004, 34(2): 248-251.
Song Zhi-gang, Wang Long-shan, Chen Xiang-wei.Using digital image processing technology to detect taper thread[J].Journal of Jilin University(Engineering and Technology Edition), 2004,34(2): 248-251.
4 朱家明, 李祥健, 徐婷宜. 基于改进的双水平集的MRI图像快速分割方法[J]. 无线电通信技术, 2020, 46(3): 345-350.
Zhu Jia-ming, Li Xiang-jian, Xu Ting-yi. Fast MRI image segmentation method based on improved bilevel set [J]. Radio Communication Technology, 2020, 46(3): 345-350.
5 Zhang X F, Zhang Y, Zheng R. Image edge detection method of combining wavelet lift with Canny operator[J]. Procedia Engineering, 2011, 15: 1335-1339.
6 Biswas R, Sil J. An improved canny edge detection algorithm based on type-2 fuzzy sets[J]. Procedia Technology, 2012, 4: 820-824.
7 杨娉娉, 武林会, 米红妹, 等. 改进的3D Canny算子在MRI乳腺图像分析中的应用[J]. 计算机测量与控制, 2017, 25(9): 143-145, 149.
Yang Ping-ping,Wu Lin-hui,Mi Hong-mei,et al.Application of improved 3D Canny operator in MRI breast image analysis[J]. Computer Measurement and Ccontrol, 2017, 25(9): 143-145, 149.
8 Al-Hafiz F, Al-Megren S, Kurdi H. Red blood cell segmentation by thresholding and Canny detector[J].Procedia Computer Science, 2018, 141: 327-334.
9 Cao J F, Chen L C, Wang M, et al. Implementing a parallel image edge detection algorithm based on the otsu-canny operator on the hadoop platform[J]. Comput Intell Neurosci, 2018(1): 3598284.
10 Iqbal B, Iqbal W, Khan N, et al. Canny edge detection and Hough transform for high resolution video streams using Hadoop and Spark[J]. Cluster Computing, 2020, 23(1): 397-408.
11 梁辰, 张文博, 高鑫. 基于混合滤波器的改进Canny算子图像边缘检测[J]. 物联网技术, 2020, 10(7): 28-30.
Liang Chen, Zhang Wen-bo, Gao Xin. Improved Canny operator image edge detection based on hybrid filter[J]. Internet of Things Technology, 2020, 10(7): 28-30.
12 郑健, 王继, 宋世铭. Canny双阈值算子在边缘提取中的优势[J]. 地理空间信息, 2019, 17(11): 128-130, 12.
Zheng Jian, Wang Ji, Song Shi-ming. The advantages of Canny double threshold operator in edge extraction[J]. Geospatial Information, 2019, 17(11): 128-130, 12.
13 张震, 马驷良, 张忠波, 等. 一种改进的基于Canny算子的图像边缘提取算法[J]. 吉林大学学报: 理学版, 2007, 45(2): 244-248.
Zhang Zhen, Ma Si-liang, Zhang Zhong-bo, et al.An improved image edge extraction algorithm based on Canny operator[J]. Journal of Jilin University(Science Edition), 2007,45(2): 244-248.
14 孙金岭, 庞娟, 张泽龙. 基于颜色特征和改进Canny算子的车牌图像定位[J]. 吉林大学学报: 理学版, 2015, 53(4): 693-697.
Sun Jin-ling, Pang Juan, Zhang Ze-long. License plate image localization based on color features and improved Canny operator[J]. Journal of Jilin University(Science Edition), 2015,53(4):693-697.
15 鲁瑞华, 杨明. 一种基于中值滤波的非线性图像处理优化算法[J]. 计算机科学, 2004(11): 224-226.
Lu Rui-hua,Yang Ming.A nonlinear image processing optimization algorithm based on median filtering[J]. Computer Science, 2004(11): 224-226.
16 刘丽霞, 李宝文, 王阳萍, 等. 改进Canny边缘检测的遥感影像分割[J]. 计算机工程与应用, 2019, 55(12): 54-58, 180.
Liu Li-xia, Li Bao-wen, Wang Yang-ping, et al.Remote sensing image segmentation with improved Canny edge detection[J]. Computer Engineering and Applications, 2019, 55(12): 54-58, 180.
17 尹奎英, 刘宏伟, 金林. 快速的Otsu双阈值SAR图像分割法[J]. 吉林大学学报: 工学版, 2011, 41(6): 760-765.
Yin Kui-ying, Liu Hong-wei, Jin Lin. Fast Otsu dual-threshold SAR image segmentation method[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(6): 760-765.
18 Li Z, Jia Z H, Liu L Y, et al.A method to improve the accuracy of SAR image change detection by using an image enhancement method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 137-151.
19 李健, 李俊杰, 任宪盛, 等. 一类基于二维线性插值函数的改进Canny算法[J]. 东北师大学报: 自然科学版, 2015, 47(4): 79-83.
Li Jian, Li Jun-jie, Ren Xian-sheng, et al. An improved Canny algorithm based on two-dimensional linear interpolation function[J]. Journal of Northeast Normal University(Natural Science), 2015, 47(4): 79-83.
[1] Fu LIU,Lu LIU,Tao HOU,Yun LIU. Night road image enhancement method based on optimized MSR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 323-330.
[2] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[3] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[4] LIANG Shi-li, CHAI Zong-qian, ZHANG Ling, WU Yan-sheng, CAO Chun-lei. Image encryption method based on partial X type cellular automaton [J]. 吉林大学学报(工学版), 2017, 47(5): 1653-1660.
[5] CHE Xiang-jiu, ZHANG Sun-min. Edge extraction method based on ant colony asynchronous update strategy [J]. 吉林大学学报(工学版), 2017, 47(5): 1577-1582.
[6] HE Guang, ZHANG Ming, YUAN Shuang-shi. Temperature-related dynamic characteristics of MEMS setback arming device [J]. 吉林大学学报(工学版), 2017, 47(1): 145-150.
[7] YAN Fei, ZHOU Chang-jiu, TIAN Yan-tao. Image edge points detection algorithm for object localization [J]. 吉林大学学报(工学版), 2016, 46(6): 2103-2110.
[8] LI Jian, LI He-yu, YAO Ru-jing, WU Lin. Check of MR image edge information of lumber intervertebral disc using an improved Canny algorithm [J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709.
[9] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[10] HAN Cheng, ZHANG Chao, QIN Gui-he, XUE Yao-hong, YANG Fan, FAN Jing-tao, LIU Wen-jing. An algorithm of optical radiometric compensation for projective system of large-scale orthogonal multi-screens [J]. 吉林大学学报(工学版), 2015, 45(4): 1266-1273.
[11] ZHANG Wen-jie, XIONG Qing-yu, SHI Wei-ren, CHEN Shu-han. Weighted neighbor-region based multi-level fuzzy edge detection method [J]. 吉林大学学报(工学版), 2015, 45(3): 998-1004.
[12] CHEN Yong-heng,WEI Ming-li,QU Zhao-wei,ZHANG Hu,CAO Ning-bo. Pedestrian crossing characteristics under influence of left-turn vehicle [J]. 吉林大学学报(工学版), 2015, 45(1): 62-67.
[13] ZHANG Jin-guo,GUO Hai-tao,WU Jun-peng,LI Yi-tong. Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target [J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[14] ZHAO Hong-wei, CHEN Xiao, LONG Man-li, PEI Shi-hui. Image edge detection based on Riesz transformation [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 133-137.
[15] HUANG De-tian, LIU Xue-chao, WU Zhi-yong, LIANG Min-hua. Design of high-speed image acquisition and processing system based on cameraLink [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 309-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!