Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2300-2306.doi: 10.13229/j.cnki.jdxbgxb20210224

Previous Articles    

Toughening effect of short basalt fiber on unsaturated polyester resin composites

Kai-feng YU1,2(),Xiao-ling HE1,2,Jun-tao LI3,Ce LIANG1,2()   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
    3.Changchun Faway Adient Automotive Systems Co. ,Ltd. ,Changchun 130011,China
  • Received:2021-03-20 Online:2022-10-01 Published:2022-11-11
  • Contact: Ce LIANG E-mail:yukf@jlu.edu.cn;liangce@jlu.edu.cn

Abstract:

The interlayer toughened basalt fiber/unsaturated polyester resin (BF/UP) composites with short basalt fiber(SBF) were prepared. The Mode II interlaminar fracture toughness, the tensile properties and bending properties of composites with different lengths and surface densities were investigated. The studies show that SBF can improve the Mode II interlaminar fracture toughness, tensile properties and bending properties of composites. When the length of SBF is 6 mm and the surface density is 30 g/m2, the Mode II interlaminar fracture toughness, tensile strength, elongation at break, flexural strength and energy absorption of the composites have the maximum improvement, which are 103%, 27%, 50%, 101% and 58% respectively.

Key words: composites, short basalt fiber, Mode II interlaminar fracture toughness, tensile properties, bending properties

CLC Number: 

  • TG327

Fig.1

Initial SBF and processed SBF"

Fig.2

Schematic representation of toughened composite fabrication process"

Fig.3

Schematic diagram of mode II interlaminarfracture test"

Fig.4

Schematic diagram of tensile test"

Fig.5

Schematic diagram of 3 point bending test"

Fig.6

Mode II interlaminar fracture toughness of composites with different SBF lengths"

Fig.7

Mode II interlaminar fractured morphology of composites with different SBF lengths"

Fig.8

Crack growth diagram of composite with SBF length of 6 mm and surface density of 30 g/m2"

Fig.9

Mode II interlaminar fractured morphology of composites"

Fig.10

Mode II interlaminar fracture toughness of composites with different SBF surface densities"

Fig.11

Mode II interlaminar fractured morphology of composites with different SBF densities"

Fig.12

Tensile properties of composites with different SBF lengths"

Fig.13

Tensile properties of composites with different SBF surface densities"

Fig.14

Flexural properties of composites with different SBF lengths"

Fig.15

Flexural properties of composites with different SBF surface densities"

1 Carolan D, Ivankovic A, Kinloch A J, et al. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices[J]. Journal of Materials Science, 2016, 52(3): 1767-1788.
2 Hernandez T P A, Mills A R, Yazdani Nezhad H. Shear driven deformation and damage mechanisms in High-performance carbon fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading[J]. Composite Structures, 2020, 261: No.113289.
3 Caminero M A, Rodr Guez G P, Chac N J M, et al. Tensile and flexural damage response of symmetric angle-ply carbon fiber-reinforced epoxy laminates: non‐linear response and effects of thickness and ply‐stacking sequence[J]. Polymer Composites, 2019, 40(9): 3678-3690.
4 Hu Y S, Cheng F, Ji Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology, 2020, 192: No.108095.
5 Huang J J, Ma C G, Wang S, et al. Improving fracture toughness of epoxy resin composites by magnetic particles modified short glass fiber[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563: No. 022035.
6 Sun Z, Hu X Z, Chen H R. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives, 2014, 48: 288-294.
7 Ravindran A R, Ladani R B, Wu S, et al. Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres[J]. Composites Science and Technology, 2018, 167: 115-125.
8 Yao J, Niu K, Niu Y, et al. Toughening efficiency and mechanism of carbon fibre epoxy matrix composites by PEK-C[J]. Composite Structures, 2019, 229: 111431.
9 Ravindran A R, Ladani R B, Wang C H, et al. Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105470.
10 Ladani R B, Ravomdram A R, Wu S, et al. Multi-scale toughening of fibre composites using carbon nanofibres and z-pins[J]. Composites Science and Technology, 2016, 131: 98-109.
11 Khandelwal S, Rhee K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011.
12 Zhao X, Wang X, Wu Z S, et al. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading[J]. Construction and Building Materials, 2020, 242: 118121.
[1] Wen-long MU,Jing-xin NA,Wei TAN,Guang-bin WANG,Hao SHEN,Jian-ze LUAN. Residual strength prediction of adhesive CFRP-aluminum alloy adhesively bonded joint based on FTIR analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 139-146.
[2] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[3] Bi⁃xiong LI,Qiao LIAO,Yi⁃ping ZHANG,Lian ZHOU,Ping WEI,Kan LIU. Theoretical on flexural behavior of ultra high strength rebar reinforced engineered cementitious composites beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1153-1161.
[4] ZHAO Gang, SUN Zhuang-zhi, GUO Hua-jun, SUI Zhi-yang, LI Fang, ZHAO Hua-xing. Performance of linear actuator unit based on ionic polymer metal composites [J]. 吉林大学学报(工学版), 2016, 46(1): 221-227.
[5] LIU Xiao-bo,ZHAO Yu-guang,YANG Wen,ZHANG Jia-tao. Wear resistance of (Mg2Si+SiCp)/ Mg composites [J]. 吉林大学学报(工学版), 2011, 41(6): 1618-1624.
[6] ZHANG Gui-lan, LIU Xian-li, JIN Song-zhe, SHANG Tao. Abrasion properties of nano-sized Al2O3 particlesreinforced Cu-C matrix composites [J]. 吉林大学学报(工学版), 2011, 41(05): 1305-1309.
[7] ZHAO Gao-lei, ZHANG Hai-long, ZHANG Bo-ping. Fabrication and properties of Cu-particle-dispersed potassium sodium niobate piezoelectric composites [J]. 吉林大学学报(工学版), 2011, 41(05): 1300-1304.
[8] LI Guang-yu, SU Ying-chao, FU Yu, LIAN Jian-she, ZHAO Yu-guang. Influence of centrifugal casting conditions on microstructure and properties of Mg2Si/Al graded composites [J]. 吉林大学学报(工学版), 2011, 41(05): 1295-1299.
[9] LIU Xiao-Bo, ZHAO Yu-Guang, LIU Yan. Wear resistance of Mg2Si/Al gradient composites [J]. 吉林大学学报(工学版), 2011, 41(02): 371-0376.
[10] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[11] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
[12] LIU Wei-hong, SUN Da-qian, JIA Shu-sheng, QIU Xiao-ming, WU Jian-hong. Advances of Research for Diffusion Bonding Particle Reinforced Aluminium Matrix Composites [J]. 吉林大学学报(工学版), 2002, (3): 96-100.
[13] ZHOU Jie-min, GONG Shu-li, TAO Yun-gang, LIN Gang. Noise Control with Active Piezoelectric-Damping Composites [J]. 吉林大学学报(工学版), 2001, (1): 91-94.
[14] YU Si-rong, HE Zhen-ming . Micro Residual Stress of Fiber/Metal Composites and Behavior During Tensile [J]. 吉林大学学报(工学版), 2000, 30(01): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!