Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2676-2684.doi: 10.13229/j.cnki.jdxbgxb20210367

Previous Articles    

Deep target tracking using augmented apparent information

Kan WANG1(),Hang SU2,Hao ZENG2,Jian QIN2()   

  1. 1.Institute of Southwest Electronic Technology,Chengdu 610036,China
    2.Microelectronic and Communication College,Chongqing University,Chongqing 400030,China
  • Received:2021-04-23 Online:2022-11-01 Published:2022-11-16
  • Contact: Jian QIN E-mail:306616278@qq.com;qinjian@cqu.edu.cn

Abstract:

Aiming at the problem that the research of video real-time target tracking based on deep neural network mainly focuses on the optimization of backbone network, and the design and training are relatively complex, a new apparent enhanced depth target tracking algorithm with apparent enhancement was proposed. Firstly, by introducing simple and easy-to-implement traditional apparent features, it is directly fused with deep semantic features, which enhances the discrimination ability of objects within a class.Secondly,through voting mechanisms and adaptive search modules, the robustness of tracking algorithm is enhanced. The test results on the VOT series data set show that compared with the benchmark algorithm, the average overlap expectation (EAO) of the proposed algorithm has been improved by 2%~4%, and the accuracy and robustness have reached or even partially exceeded the existing complex optimization algorithms.

Key words: computer vision, siamese network, apparent information, voting mechanism, adaptive search

CLC Number: 

  • TP391

Fig.1

Deep target tracking framework using augmented apparent information"

Fig.2

Framework of SiamRPN++"

Fig.3

Diagram of apparent feature module"

Fig.4

Diagram of voting mechanism"

Fig.5

Diagram of adaptive search module"

Table 1

Apparent feature module test on VOT2018"

特征LostAccuracyRobustnessEAO
Baseline(原始)500.6010.2340.415
颜色特征480.6040.2250.417
HOG特征490.6020.2290.422
LBP特征490.6020.2290.415

Fig.6

Comparison of apparent feature module and the baseline on VOT2018"

Table 2

Adaptive mechanism 1 test on VOT2018"

VOT2018基线搜索区自适应缩小搜索区自适应扩大搜索区自适应放缩
Lost50515150
Accuracy0.6010.6050.6050.600
Robustness0.2340.2390.2390.234
EAO0.4150.4000.4040.398

Table 3

Adaptive mechanism2 test on VOT2018"

VOT2018基线搜索区自适应缩小搜索区自适应扩大a搜索区自适应扩大b搜索区自适应放缩a搜索区自适应放缩b
Lost504548494344
Accuracy0.6010.5940.6090.6030.6010.595
Robustness0.2340.2110.2250.2290.2010.206
EAO0.4150.4380.4170.4220.4410.446

Fig.7

Comparison of adaptive mechanism2 and the baseline on VOT2018"

Table 4

Ablation test on VOT2018"

颜色HOGLBP自适应搜索区域策略LostAccuracyRobustnessEAO
480.6040.2250.417
490.6020.2290.422
490.6020.2290.415
430.5950.2010.450
430.5970.2010.453
480.5950.2250.416

Table 5

Results of our framework on VOT test set"

数据集颜色+自适应搜索HOG+自适应搜索LBP+自适应搜索SiamRPN++
VOT2016Accuracy0.6360.6380.6240.642
Robustness0.1680.1720.1720.196
EAO0.4670.4830.4690.464
VOT2018Accuracy0.5950.5970.5950.600
Robustness0.2010.2010.2250.234
EAO0.4500.4530.4160.414

Fig.8

Results on video sequence"

Table 6

Comparison results of our framework and other algorithms on VOT test set"

Test set评价指标本文SiamRPN++ATOM12SiamMask13C-COT14LADCF15DiMP16
VOT2016Accuracy0.6380.6420.6100.6400.540
Robustness0.1720.1960.1800.2140.238
EAO0.4830.4640.4300.4330.331
VOT2018Accuracy0.5970.6000.5900.6100.510
Robustness0.2010.2340.2040.2760.159
EAO0.4530.4140.4010.3800.389
VOT2019Accuracy0.5900.5990.6030.5940.594
Robustness0.4210.4820.4110.4610.278
EAO0.3010.2850.2920.2870.379
1 徐谦,李颖,王刚.基于深度学习的行人和车辆检测[J].吉林大学学报:工学版, 2019, 49(5): 1661-1667.
Xu Qian, Li Ying, Wang Gang, Pedestrian-vehicle detection based on deep learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
2 Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Utah, USA, 2018: 8971-8980.
3 Matej K, Ales L, Jiri M, et al. The sixth visual object tracking VOT2018 challenge results[C]∥European Conference on Computer Vision, Munich, Germany, 2018: 3-53.
4 Wang Q, Li B. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4277-4286.
5 Zhang Z P, Peng H W. Deeper and wider siamese networks for real-time visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4586-4595.
6 徐涛, 马克, 刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报: 工学版, 2021, 51(1): 27-38.
Xu Tao, Ma Ke, Liu Cai-hua. Multi object pedestrian tracking based on deep learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38.
7 Voigtlaender P, Luiten J, Torr P H S, et al. Siam R-CNN: visual tracking by re-detection[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6577-6587.
8 Xu Y D, Wang Z Y, Li Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]// Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12549-12556.
9 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
10 Kristan M, Leonardis A, Matas J, et al. The visual object tracking VOT2016 challenge results[C]∥IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 2015: 607-628.
11 Kristan M, Leonardis A, Matas J, et al.The seventh visual object tracking VOT2019 challenge results[C]∥IEEE International Conference on Computer Vision Workshop, Seoul, Korea, 2019: 2206-2241.
12 Martin D, Goutam B, Fahad S K, et al. ATOM: accurate tracking by overlap maximization[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4660-4669.
13 Wang Q, Zhang L, Luca B, et al. Fast online object tracking and segmentation: a unifying approach[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1328-1338.
14 Anelljan M, Robinson A, Khan F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 472-488.
15 Xu T, Feng Z H, Wu X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5596-5609.
16 Goutam B, Martin D, Luc V G, et al. Learning discriminative model prediction for tracking[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 6182-6191.
17 薛英杰,韩威,周松斌,等.基于生成对抗单分类网络的异常声音检测[J].吉林大学学报:理学版,2021,59(6):1517-1524.
Xue Ying-jie, Han Wei, Zhou Song-bin,et al. Abnormal sound detection based on generative adversarial single classification network[J]. Journal of Jilin University(Science Edition),2021,59(6):1517-1524.
18 朱新丽,才华,寇婷婷,等.行人多目标跟踪算法[J]. 吉林大学学报:理学版,2021,59(5):1161-1170.
Zhu Xin-li, Cai Hua, Kou Ting-ting, et al. Pedestrian multi-target tracking algorithm[J]. Journal of Jilin University(Science Edition),2021,59(5):1161-1170.
19 龙年.基于轨迹提取算法的视频关联动作跟踪仿真[J].吉林大学学报:理学版,2022,60(3):641-646.
Long Nian. Simulation of video association motion tracking based on trajectory extraction algorithm[J]. Journal of Jilin University(Science Edition),2022,60(3):641-646.
[1] Yong LIU,Lei XU,Chu-han ZHANG. Deep reinforcement learning model for text games [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 666-674.
[2] Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791.
[3] Tao XU,Ke MA,Cai-hua LIU. Multi object pedestrian tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38.
[4] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[5] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[6] WANG Yi-yuan, OUYANG Dan-tong, ZHANG Li-ming. Min-length hitting set GRASP algorithm based on dynamic degree of components [J]. 吉林大学学报(工学版), 2017, 47(3): 930-936.
[7] XU Yan-yan, CHEN Hui, LIU Jia-ju, YUAN Jin-zhao. Cell processor stereo matching parallel computation [J]. 吉林大学学报(工学版), 2017, 47(3): 952-958.
[8] ZHANG Bao-hua, HUANG Wen-qian, LI Jiang-bo, ZHAO Chun-jiang, LIU Cheng-liang, HUANG Dan-feng. Online sorting of irregular potatoes based on I-RELIEF and SVM method [J]. 吉林大学学报(工学版), 2014, 44(6): 1811-1817.
[9] YANG Yan, LIU Sa, LIAN Shi-bin, ZHU Xiao-dong. Analysis of fruit tree pests morphological characteristics based on computer vision [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 235-238.
[10] SHANG Fei, MA Jun-Xiao, YAO Li, TIAN Di, QIU Chun-Ling. Multifeature fusion based method for monitoring working status of instruments [J]. 吉林大学学报(工学版), 2010, 40(02): 545-0548.
[11] GE Liang, ZHU Qing-sheng, FU Si-si, LUO Da-jiang, LIU Jin-feng. Improved image dense stereo matching algorithm [J]. 吉林大学学报(工学版), 2010, 40(01): 212-0217.
[12] GUAN Xin, JIA Xin, GAO Zhen-hai . Adaptive threshold algorithm based on contrast-regional homogeneity
analysis of lane image
[J]. 吉林大学学报(工学版), 2008, 38(04): 758-763.
[13] Wan Peng,Sun Yu,Sun Yong-hai . Recognition method of rice kernel shape based on computer vision [J]. 吉林大学学报(工学版), 2008, 38(02): 489-0492.
[14] Tian Jian, Li Jiang, Li Yaqiao. Calibration technique of photogrammetry of traffic accident scene [J]. 吉林大学学报(工学版), 2006, 36(增刊1): 136-0139.
[15] GUAN Xin, DONG Yin-ping, GAO Zhen-hai. LMedSquare based road curve fitting algorithm [J]. 吉林大学学报(工学版), 2004, (2): 194-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!