Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2941-2946.doi: 10.13229/j.cnki.jdxbgxb20210389
Previous Articles Next Articles
Le-ping LIN1,2(),Zeng-tong LU2,Ning OUYANG1,2()
CLC Number:
1,1 | 齐妙, 闫光友, 徐慧, 等. 基于多尺度特征选择网络的人脸表情识别[J]. 吉林大学学报:理学版,2022, 60(2): 425-431. |
Qi Miao, Yan Guang-you, Xu Hui, et al. Facial expression recognition based on multi-scale feature selection network[J]. Journal of Jilin University (Science Edition), 2022, 60(2): 425-431.. | |
2 | Zhao J, Cheng Y, Xu Y, et al. Towards pose invariant face recognition in the wild[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2207-2216. |
3 | Cheng J, Chen Y P P, Li M, et al. Tc-GAN: triangle cycle-consistent GANs for face frontalization with facial features preserved[C]∥Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 2019: 220-228. |
4 | 葛延良, 孙笑笑, 张乔, 等. 基于循环生成对抗网络的人脸素描合成[J]. 吉林大学学报:理学版,2022,60(4): 897-905. |
Ge Yan-liang, Sun Xiao-xiao, Zhang Qiao, et al. Face Sketch Synthesis Based on Cycle-Generative Adversarial Networks[J]. Journal of Jilin University (Science Edition), 2022, 60(4): 897-905.. | |
5 | 周大可,张超,杨欣. 基于多尺度特征融合及双重注意力机制的自监督三维人脸重建[J]. 吉林大学学报: 工学版, 2022, 52(10): 2428-2437. |
Zhou Da-ke, Zhang Chao, Yang Xin. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2428-2437. | |
6 | Huang R, Zhang S, Li T, et al. Beyond face rotation: global and local perception gan for photorealistic and identity preserving frontal view synthesis[C]∥Proceedings of the IEEE International Conference on Computer Vision, Honolulu, HI, USA, 2017: 2439-2448. |
7 | Huang H, Ran H, Sun Z, et al. Wavelet-SRNet: a wavelet-based cnn for multi-scale face super resolution[C]∥Proceedings of the IEEE International Conference on Computer Vision, Honolulu, HI, USA, 2017: 1698-1706. |
8 | Shi W, Caballoa J, Huszar F, et al. Real-time single image and video super-resolution using an efficient sub-pixel Convolutional Neural Network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1874-1883. |
9 | Chen Y, Tai Y, Liu X, et al. Fsrnet: end-to-end learning face super-resolution with facial priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2492-2501. |
10 | Goodfellow I J, Pought-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672-2680. |
11 | Bulat A, Tzimiropoulos G. Super-fan: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with gans[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 109-117. |
12 | Li P, Wu X, Hu Y, et al. M2FPA: a multi-yaw multi-pitch high-quality dataset and benchmark for facial pose analysis[C]∥Proceedings of the IEEE International Conference on Computer Vision, Long Beach, CA, USA, 2019: 10043-10051. |
13 | Wang Z, Zheng L, Li Y, et al. Linkage based face clustering via graph convolution network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 1117-1125. |
14 | Cao K, Rong Y, Li C, et al. Pose-robust face recognition via deep residual equivariant mapping[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 5187-5196. |
15 | Zhou H, Liu J, Liu Z, et al. Rotate-and-render: unsupervised photorealistic face rotation from single-view images[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 5911-5920. |
16 | Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recognition and clustering[C]∥Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 815-823. |
17 | Yin Y, Jiang S, Robinson J P, et al. Dual-attention GAN for large-pose face frontalization[C]∥15th IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 2020: 249-256. |
18 | 柯鹏飞, 蔡茂国, 吴涛. 基于改进卷积神经网络与集成学习的人脸识别算法[J]. 计算机工程, 2020, 46(2): 262-267, 273. |
Ke Peng-fei, Cai Mao-guo, Wu Tao. Face recognition algorithm based on improved convolutional neural network and ensemble learning[J]. Computer Engineering, 2020, 46(2): 262-267, 273. | |
19 | 黄义妨, 魏丹丹, 武淼, 等. 面向不同传感器与复杂场景的人脸识别系统防伪方法综述[J]. 计算机工程, 2021, 47(12): 1-18. |
Huang Yi-fang, Wei Dan-dan, Wu Miao, et al. Overview of anti-spoofing methods of face recognition systems for different sensors and complex scenes[J]. Computer Engineering, 2021, 47(12): 1-18. | |
20 | 李新春,马红艳,林森.基于局部邻域四值模式的掌纹掌脉融合识别[J].重庆邮电大学学报: 自然科学版, 2020, 32(4): 630-638. |
Li Xin-chun, Ma Hong-yan, Lin Sen. Palmprint and palm vein fusion recognition based on local neighbor quaternary pattern[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 47(5): 285-291, 300. | |
21 | 陶施帆, 李玉峰, 黄煜峰, 等. 基于深度残差网络和注意力机制的人脸检测算法[J]. 计算机工程, 2021, 47(11): 276-282. |
Tao Shi-fan, Li Yu-feng, Huang Yu-feng, et al. Face detection algorithm based on deep residual network and attention mechanism[J]. Computer Engineering, 2021, 47(11): 276-282. | |
22 | 胡静,陶洋.基于RPCA的群稀疏表示人脸识别方法[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(3): 459-468. |
Hu Jing, Tao Yang. Group sparse representation face recognition method based on RPCA[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(3): 459-468. | |
23 | Wu X, He R, Sun Z, et al. A light CNN for deep face representation with noisy labels[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 2884-2896. |
24 | Cao Q, Shen L, Xie W, et al. Vggface2: a dataset for recognising faces across pose and age[C]∥13th IEEE International Conference on Automatic Face and Gesture Recognition, Xi'an, China, 2018: 67-74. |
25 | Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]∥Proceedings of International Conference on Machine Learning, Sydney, Australia, 2017: 214-223. |
[1] | Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Chun-hao SHI,Guo-rui LI. Point cloud registration method based on supervoxel bidirectional nearest neighbor distance ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1918-1925. |
[2] | Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Da XIE. Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 950-958. |
[3] | Hui-jing DOU,Gang DING,Jia GAO,Xiao LIANG. Wideband signal direction of arrival estimation based on compressed sensing theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2237-2245. |
[4] | Xin-yu JIN,Mu-han XIE, SUN-Bin. Grain information compressed sensing based on semi-tensor product approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 379-385. |
[5] | Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008. |
|