Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2947-2953.doi: 10.13229/j.cnki.jdxbgxb20210884

Previous Articles     Next Articles

Multi⁃grained social network user portrait construction method based on knowledge graph

Cai-mao LI(),Shao-fan CHEN(),Cheng-rong LIN,Hao LIN,Qiu-hong CHEN   

  1. School of Computer Science and Technology,Hainan University,Haikou 570228,China
  • Received:2021-09-07 Online:2022-12-01 Published:2022-12-08
  • Contact: Shao-fan CHEN E-mail:lcaim@126.com;18876162688@139.com

Abstract:

Aiming at the ambiguity of attribute information partition of social users in network, a multi-granularity social user image construction method based on knowledge graph was proposed. Using knowledge graph to map user information and classify multi-dimensional attributes of mapped data, a set of social users was established. The same weight value of each user's corresponding attribute tag in the set was given, and the weight parameters and the frequency of interest tag were calculated. Then, according to the click-frequency information of users, a sequence of continuous active locations and active ranges of users in a multi-granularity social network was constructed, and the features of each user in the sequence were calculated and divided in a unified manner to complete the establishment of user images. Simulation experiments show that the user profile construction time under the proposed method does not exceed 25 ms, and the maximum number of matching overlaps of corresponding attributes is 705. The matching degree is high, indicating that the constructed user profile information is clearly divided.

Key words: computer application, knowledge graph, social users, efficient mapping, multi-dimensions, weight values

CLC Number: 

  • TP18

Fig.1

Schematic diagram of attribute label division of social network users"

Fig.2

Three level division representation of user social user attributes"

Table 1

Details of social networking users in simulation experiment"

序号群组数量成员数量社交话题属性数量
1255电影100
2581文学100
34128创业300
45135摄影300
54122生活200

Fig.3

Efficiency of user portrait construction based on causal factor correlation method"

Fig.4

User portrait construction efficiency based on multi view data-driven method"

Fig.5

User portrait construction efficiency based on the proposed method"

Fig.6

Comparison of user attribute overlap matching degree of three methods"

1 张艳丰,彭丽徽,洪闯,等. 因果要素关联视域下社交媒体倦怠用户画像模型构建[J]. 图书情报工作,2019, 63(14): 94-100.
Zhang Yan-feng, Peng Li-hui, Hong Chuang, et al. Construction of user portrait model of social media burnout from the perspective of causal factor association[J]. Library and Information Service Work, 2019,63(14): 94-100.
2 陈烨,陈天雨,董庆兴. 多视角数据驱动的社会化问答平台用户画像构建模型研究[J]. 图书情报知识,2019, 37(5): 64-72.
Chen Ye, Chen Tian-yu, Dong Qing-xing. Research on the model construction of multi-view-data-driven user profile for social Q&A platform[J]. Book and Intelligence Knowledge, 2019, 37(5): 64-72.
3 Ruan Q, Wu Q, Wang Y, et al. Effective learning model of user classification based on ensemble learning algorithms[J]. Computing,2019, 101(6): 531-545.
4 许力分,倪志伟,朱旭辉,等. 融合基于mapreduce并行改进二元蚁群算法与分形维数的属性选择方法[J]. 系统科学与数学, 2019, 39(6): 918-933.
Xu Li-fen, Ni Zhi-wei, Zhu Xu-hui, et al. Attribute selection method combined with mapreduce-based improved BACO and fractal dimension[J]. Journal of Systems Science and Mathematical Sciences,2019,39(6):918-933.
5 刘小洋,唐婷,何道兵. 融合社交网络用户自身属性的信息传播数学建模与舆情演化分析[J]. 中文信息学报, 2019, 33(9): 115-122.
Liu Xiao-yang, Tang Ting, He Dao-bing. Mathematical modeling and public opinion evolution analysis of information diffusion with the user attributes[J]. Journal of Chinese Information Processing,2019,33(9): 115-122.
6 李飞. 全渠道客户旅程体验图——基于用户画像、客户体验图和客户旅程图的整合研究[J]. 技术经济,2019,38(5):46-56.
Li Fei. Omni-channel oustomer journey experience map: integration research based on personas, customer experience map and customer journey map[J]. Technology Economics, 2019, 38(5): 46-56.
7 郑源,陈品祥,冯学兵,等. 北京房地产新政下的房地产市场特点研究——基于不动产登记的用户画像[J]. 测绘通报,2019():176-180.
Zheng Yuan, Chen Pin-xiang, Feng Xue-bing, et al. Real estate market characteristics under beijing new real estate policy——based on real estate registration[J]. Mapping Bulletin, 2019(Sup.2): 176-180.
8 孙铁柱,田琳. 基于CRT分类算法的用户画像分层模型——以银行借贷用户为例[J]. 情报科学, 2020,38(9): 75-81.
Sun Tie-zhu, Tian Lin. Model of user layered profile based on CRT classification algorithm——taking loan users of bank as an example[J]. Intelligence Science,2020,38(9): 75-81.
9 张宜浩,朱小飞,徐传运,等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1316-1333.
Zhang Yi-hao, Zhu Xiao-fei, Xu Chuan-yun, et al. Hybrid recommendation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese Journal of Computers, 2019,42(6): 1316-1333.
10 张大勇,许磊,孔洪新. 社交媒体用户群体互动行为特征研究——以微信用户群分享为例[J]. 情报理论与实践, 2019, 42(10): 97-101, 116.
Zhang Da-yong, Xu Lei, Kong Hong-xin. Users' interaction behavior characteristics of social media: an exploration of wechat group's sharing behavior[J]. Information Studies: Theory & Application, 2019, 42(10): 97-101, 116.
11 吴晓,王凌瑾,宁昱西,等. 从社交网络到地理网络——基于南京市高校新浪微博用户的分析[J]. 经济地理, 2020, 40(4): 83-95.
Wu Xiao, Wang Ling-jin, Ning Yu-xi, et al. From social network to geographical network: a case study of college Sina weibo users in Nanjing[J]. Economic Geography,2020,40(4):83-95.
12 张敏军,华庆一. 基于概率矩阵分解算法的社交网络用户兴趣点个性化推荐[J].计算机科学,2020, 47(12):144-148.
Zhang Min-jun, Hua Qing-yi. Personalized recommendation of social network users'interest points based on probability matrix decomposition algorithm[J]. Computer Science,2020,47(12):144-148.
13 杨玉仁,张书奎,龙浩,等. 群智感知中基于社交属性及有效用户计算的任务分发机制[J]. 计算机应用研究,2019,36(5):1493-1499.
Yang Yu-ren, Zhang Shu-kui, Long Hao, et al. Task distribution mechanism based on social attribute and effective user calculation in crowd sensing [J]. Application Research of Computers,2019,36(5): 1493-1499.
14 周效章. 高校数字资源社会化服务的用户需求属性分析——基于Kano模型[J].情报杂志,2019,38(10):200-207.
Zhou Xiao-zhang. Attributes of user's demand of the socialized digital resources service in universities: an analysis based on the Kano model[J]. Journal of Intelligence,2019,38(10):200-207.
15 张天杭,李婷婷,张永刚. 基于知识图谱嵌入的多跳中文知识问答方法[J]. 吉林大学学报:理学版, 2022, 60(1): 119-126.
Zhang Tian-hang, Li Ting-ting, Zhang Yong-gang. Multi-hop chinese knowledge question answering method based on knowledge graph embedding[J]. Journal of Jilin University(Science Edition), 2022, 60(1): 119-126.
16 王美月,王萍,贾琼,等. 基于动态用户画像的学术虚拟社区粘性驱动机制研究[J]. 现代情报, 2019, 39(7): 9-17.
Wang Mei-yue, Wang Ping, Jia Qiong, et al. Research on sticky driving mechanism in virtual academic community based on dynamic user profile[J]. Modern Intelligence,2019,39(7):9-17.
17 王凯,潘玮,杨枢,等. 基于模糊概念格的丁香园社区用户多粒度画像研究[J]. 情报理论与实践,2020,43(8):103-111.
Wang Kai, Pan Wei, Yang Shu, et al. Multi-grained portrait of community users based on fuzzy concept lattice: taking ding xiang yuan as example [J].Information Studies:Theory & Application, 2020,43(8):103-111.
18 蒋明会,苗夺谦,罗晟,等. 基于粒计算的多粒度用户画像[J]. 模式识别与人工智能,2019,32(8):691-698.
Jiang Ming-hui, Miao Duo-qian, Luo Sheng, et al. Multi-granularity user portrait based on granular computing[J]. Mode recognition and AI,2019,32(8): 691-698.
19 余明华,张治,祝智庭. 基于可视化学习分析的研究性学习学生画像构建研究[J]. 中国电化教育, 2020(12): 36-43.
Yu Ming-hua, Zhang Zhi, Zhu Zhi-ting. Research on the construction of student portrait in research-based learning based on visual learning analytics[J]. China Educational Technology, 2020(12): 36-43.
20 康雁, 李涛, 李浩, 等. 融合知识图谱与协同过滤的推荐模型[J]. 计算机工程, 2020, 46(12): 73-79, 87.
Kang Yan, Li Tao, Li Hao, et al, Recommendation model fusing with knowledge graph and collaborative filtering[J]. Computer Engineering, 2020, 46(12): 73-79, 87.
21 袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(4): 620-629.
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629.
22 胡静,陶洋.基于RPCA的群稀疏表示人脸识别方法[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(3): 459-468.
Hu Jing, Tao Yang. Group sparse representation face recognition method based on RPCA[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(3): 459-468.
23 唐浩, 刘柏嵩, 刘晓玲, 等. 基于协同知识图谱特征学习的论文推荐方法[J]. 计算机工程, 2020, 46(9): 306-312.
Tang Hao, Liu Bai-song, Liu Xiao-ling, et al. Paper recommendation method based on feature learning of collaborative knowledge graph[J]. Computer Engineering, 2020, 46(9): 306-312.
24 唐烨伟,茹丽娜,范佳荣,等. 基于学习者画像建模的个性化学习路径规划研究[J]. 电化教育研究,2019,40(10):53-60.
Tang Ye-wei, Ru Li-na, Fan Jia-rong, et al. Research on planning of personalized learning path based on learner portrait modeling[J]. e-Education Research, 2019,40(10): 53-60.
25 李新春,马红艳,林森.基于局部邻域四值模式的掌纹掌脉融合识别[J].重庆邮电大学学报: 自然科学版, 2020, 32(4): 630-638.
Li Xin-chun, Ma Hong-yan, Lin Sen. Palmprint and palm vein fusion recognition based on local neighbor quaternary pattern[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 47(5): 285-291, 300.
[1] Xian-yu QI,Wei WANG,Lin WANG,Yu-fei ZHAO,Yan-peng DONG. Semantic topological map building with object semantic grid map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 569-575.
[2] Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592.
[3] Peng GUO,Wen-chao ZHAO,Kun LEI. Dual⁃resource constrained flexible job shop optimal scheduling based on an improved Jaya algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 480-487.
[4] Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583.
[5] Gui-he QIN,Jun-feng HUANG,Ming-hui SUN. Text input based on two⁃handed keyboard in virtual environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888.
[6] Fu-heng QU,Tian-yu DING,Yang LU,Yong YANG,Ya-ting HU. Fast image codeword search algorithm based on neighborhood similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1865-1871.
[7] Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880.
[8] Feng-feng ZHOU,Hai-yang ZHU. SEE: sense EEG⁃based emotion algorithm via three⁃step feature selection strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1834-1841.
[9] Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656.
[10] Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665.
[11] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[12] Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433.
[13] Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933.
[14] Shi-min FANG. Multiple source data selective integration algorithm based on frequent pattern tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 885-890.
[15] Da-xiang LI,Meng-si CHEN,Ying LIU. Spontaneous micro-expression recognition based on STA-LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 897-909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Xiao-hui, SHI Yao-wu. Cross-spectral ESPRIT Method for LFM Parameter[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .
[2] KONG Fan-sen,WANG Jun,SUN Hai-gang . Fuzzy comprehensive evaluation of equipment usability of engine cylinder block production line based on AHP[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[3] HE Dong-ye,YANG Shen-hua,KOU Shu-qing . Numerical analysis on fracture splitting technology of main bearing block of engine[J]. 吉林大学学报(工学版), 2009, 39(01): 78 -82 .
[4] SHI Wen-Xiao, GONG Jing. An uplink packet scheduling algorithm based on WiMAX[J]. 吉林大学学报(工学版), 2010, 40(05): 1386 -1391 .
[5] Jin Lisheng, Wang Rongben, Gao Long, Guo Lie. Shadow path mark segmentation method based on regiongrowing for intelligent vehicle[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[6] WANG Qiang,DAI Jing-min,HE Xiao-wa. Effect of time delay on thermal conductivity measurement with transient planar heat source technique[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[7] MA Kai, GUAN Hsin, PANG Shu-yi, ZHAN Jun. Interval control method on consistency of suspension kinematics[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[8] YANG Zhi-yong, GUI Li-hua, YANG Xiu-xia, GU Wen-jin . Exoskeleton suit neural network sensitivity amplification control technique[J]. 吉林大学学报(工学版), 2009, 39(03): 824 -0829 .
[9] YU De-xin,YANG Zhao-sheng,GAO Peng. Constrained K-shortest paths algorithm within |dynamic restricted searching area[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 172 -0176 .
[10] XU Jing-bo,YUAN Yi-bao, CUI Xiao-meng, GUO Xin, WANG Sheng. Rational approximation implementation approach to determine Gaussian filtering mean line in surface roughness measurement[J]. 吉林大学学报(工学版), 2014, 44(5): 1347 -1352 .