Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 584-592.doi: 10.13229/j.cnki.jdxbgxb20210618

Previous Articles     Next Articles

Residual network based curve enhanced lane detection method

Xiao-hu SHI1,2(),Jia-qi WU1,Chun-guo WU1,2,Shi CHENG1,Xiao-hui WENG3,Zhi-yong CHANG4,5()   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    3.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    4.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    5.Key Laboratory of Bionic Engineering of Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2021-07-05 Online:2023-02-01 Published:2023-02-28
  • Contact: Zhi-yong CHANG E-mail:shixh@jlu.edu.cn;zychang@jlu.edu.cn

Abstract:

In this paper, the main purpose is to improve the curve detection effect, and considering the detection speed comprehensively, a curve lane detection method based on residual network is proposed. In this method, the residual network is used as the main framework and the curve enhancement is realized by adding the curve structure constraints to the loss function. On the other hand, in order to reduce the complexity of the model, the weights pruning technique is used to reduce the model. The result shows that the curve enhancement strategy proposed in this paper can not only effectively improve the algorithm performance in the curve scene, but also has little impact on the detection performance of straight lanes. After adding the sparse pruning strategy, the algorithm greatly reduces the computation time without significant performance degradation, which is more in line with actual production requirements.

Key words: technology of computer application, lane detection, residual network, loss function, pruning

CLC Number: 

  • TP391.4

Fig.1

CELD network structure diagram and dimension of corresponding network layer"

Fig.2

A priori curve structure"

Fig.3

Pruning process"

Fig.4

CELD training flowchart"

Table 1

Comparison results between UFLD and curve enhanced"

指标模型Tusimple弯道测试集
AccuracyUFLD0.95810.9462
弯道增强0.95790.9572
PrecisionUFLD0.80950.7789
弯道增强0.81040.7987
RecallUFLD0.95380.9229
弯道增强0.95540.9533
F1UFLD0.87570.8448
弯道增强0.87690.8692

Fig.5

Comparison results of pruning rate"

Table 2

Comparison results of pruning"

指标模型无剪枝有剪枝
AccuracyUFLD0.94620.9340
弯道增强0.95720.9505
PrecisionUFLD0.77890.7688
弯道增强0.79870.7886
RecallUFLD0.92290.9099
弯道增强0.95330.9375
F1UFLD0.84480.8334
弯道增强0.86920.8566

Fig.6

Comparison of test time"

Table 3

Comparison of accuracy with up-to-date methods"

算 法准确率
UFLD0.9581
FastDraw0.9520
编-解码卷积网络0.9550
本文方法(带剪枝策略)0.9505
本文方法(无剪枝策略)0.9579
1 Xu Z, Shin B, Klette R. Accurate and robust line segment extraction using minimum entropy with hough transform[J]. IEEE Transactions Image Process, 2015, 24(3): 813-822.
2 Hillel A B, Lerner R, Levi D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745.
3 Lookingbill A, Rogers J, Lieb D, et al. Reverse optical flow for self-supervised adaptive autonomous robot navigation[J]. International Journal of Computer Vision, 2007, 74(3): 287-302.
4 Li X Y, Fang X Z, Wang C, et al. Lane detection and tracking using a parallel-snake approach[J]. Journal of Intelligent & Robotic Systems, 2015, 77(3): 597-609.
5 Borkar A, Hayes M, Smith M T. Polar randomized hough transform for lane detection using loose constraints of parallel lines[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 1037-1040.
6 Lee C, Moon J H. Robust lane detection and tracking for real-time applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 4043-4048.
7 Suddamalla U, Kundu S, Farkade S, et al. A novel algorithm of lane detection addressing varied scenarios of curved and dashed lanemarks[C] ∥International Conference on Image Processing Theory, Tools and Applications, Orléans, France, 2015: 87-92.
8 贾阳, 王荣本, 余天洪, 等. 基于熵最大化边缘提取的直线型车道标识线识别及跟踪方法[J]. 吉林大学学报: 工学版, 2005, 35(4): 420-425.
Jia Yang, Wang Rong-ben, Yu Tian-hong, et al. Linear lane mark identification and track method based on entropy maximization edge extraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 420-425.
9 Jung C R, Kelber C R. An improved linear-parabolic model for lane following and curve detection[C]∥XVIII Brazilian Symposium on Computer Graphics and Image Processing, Natal, Brazil, 2005: 131-138.
10 吴骅跃, 段里仁. 基于RGB熵和改进区域生长的非结构化道路识别方法[J]. 吉林大学学报: 工学版, 2019, 49(3): 727-735.
Wu Hua-yue, Duan Li-ren. Unstructured road detection method based on RGB entropy and improved region growing[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 727-735.
11 Huval B, Wang T, Tandon S, et al. An empirical evaluation of deep learning on highway driving[J/OL]. [2015-04-17].
12 Gurghian A, Koduri T, Bailur S V, et al. Deeplanes: end-to-end lane position estimation using deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 38-45.
13 He B, Ai R, Yan Y, et al. Accurate and robust lane detection based on dual-view convolutional neutral network[C]∥IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 2016: 1041-1046.
14 Pan X, Shi J, Luo P, et al. Spatial as deep: spatial cnn for traffic scene understanding[J/OL]. [2017-12-17].
15 Philion J. FastDraw: Addressing the long tail of lane detection by adapting a sequential prediction network[C]∥Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11574-11583.
16 Khan H U, Ali A R, Hassan A, et al. Lane detection using lane boundary marker network with road geometry constraints[C]∥IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, USA, 2020: 1823-1832.
17 Qin Z, Wang H, Li X. Ultra fast structure-aware deep lane detection[J/OL]. [2020-08-05].
18 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
19 Dettmers T, Zettlemoyer L. Sparse networks from scratch: faster training without losing performance[J/OL]. [2019-08-23].
20 Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. [2017-01-30].
[1] Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421.
[2] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[3] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[4] Sheng-sheng WANG,Chen-xu LI,Xiang-yu WANG,Zhi-lin YAO,Yi-shen LIU,Jia-qian WU,Qing-ran YANG. Brain tumor image classification based on improved residual capsule network and sparrow search [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2653-2661.
[5] Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531.
[6] Xue-yun CHEN,Tao XU,Xiao-qiao HUANG. Detection method of medical cell image generation based on conditional generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1414-1419.
[7] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
[8] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[9] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[10] WANG Hong-mei, DANG Yuan-yuan, HU Ming, LIU Da-you. Frequent itemsets mining algorithm based on sort tree [J]. 吉林大学学报(工学版), 2016, 46(4): 1216-1221.
[11] QIN Chuan-dong, LIU San-yang. Tumor gene selection based on double regularized support vector machine [J]. 吉林大学学报(工学版), 2013, 43(01): 192-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[5] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[6] Liang Ji-cai, Li Yi, Li Zhong-ran, Zhang Wei, Liu Cheng-de . Numerical simulation of filling process in resin transfer molding for automobile bumper[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 15 -19 .
[7] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Tang Xin-xing,Zhao Ding-xuan,Huang Hai-dong,Ai Xue-zhong,Feng Shi-zhu . Modified stereo vision calibration method for construction robot
[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .