Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 584-592.doi: 10.13229/j.cnki.jdxbgxb20210618
Previous Articles Next Articles
Xiao-hu SHI1,2(),Jia-qi WU1,Chun-guo WU1,2,Shi CHENG1,Xiao-hui WENG3,Zhi-yong CHANG4,5()
CLC Number:
1 | Xu Z, Shin B, Klette R. Accurate and robust line segment extraction using minimum entropy with hough transform[J]. IEEE Transactions Image Process, 2015, 24(3): 813-822. |
2 | Hillel A B, Lerner R, Levi D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. |
3 | Lookingbill A, Rogers J, Lieb D, et al. Reverse optical flow for self-supervised adaptive autonomous robot navigation[J]. International Journal of Computer Vision, 2007, 74(3): 287-302. |
4 | Li X Y, Fang X Z, Wang C, et al. Lane detection and tracking using a parallel-snake approach[J]. Journal of Intelligent & Robotic Systems, 2015, 77(3): 597-609. |
5 | Borkar A, Hayes M, Smith M T. Polar randomized hough transform for lane detection using loose constraints of parallel lines[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 1037-1040. |
6 | Lee C, Moon J H. Robust lane detection and tracking for real-time applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 4043-4048. |
7 | Suddamalla U, Kundu S, Farkade S, et al. A novel algorithm of lane detection addressing varied scenarios of curved and dashed lanemarks[C] ∥International Conference on Image Processing Theory, Tools and Applications, Orléans, France, 2015: 87-92. |
8 | 贾阳, 王荣本, 余天洪, 等. 基于熵最大化边缘提取的直线型车道标识线识别及跟踪方法[J]. 吉林大学学报: 工学版, 2005, 35(4): 420-425. |
Jia Yang, Wang Rong-ben, Yu Tian-hong, et al. Linear lane mark identification and track method based on entropy maximization edge extraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 420-425. | |
9 | Jung C R, Kelber C R. An improved linear-parabolic model for lane following and curve detection[C]∥XVIII Brazilian Symposium on Computer Graphics and Image Processing, Natal, Brazil, 2005: 131-138. |
10 | 吴骅跃, 段里仁. 基于RGB熵和改进区域生长的非结构化道路识别方法[J]. 吉林大学学报: 工学版, 2019, 49(3): 727-735. |
Wu Hua-yue, Duan Li-ren. Unstructured road detection method based on RGB entropy and improved region growing[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 727-735. | |
11 | Huval B, Wang T, Tandon S, et al. An empirical evaluation of deep learning on highway driving[J/OL]. [2015-04-17]. |
12 | Gurghian A, Koduri T, Bailur S V, et al. Deeplanes: end-to-end lane position estimation using deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 38-45. |
13 | He B, Ai R, Yan Y, et al. Accurate and robust lane detection based on dual-view convolutional neutral network[C]∥IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 2016: 1041-1046. |
14 | Pan X, Shi J, Luo P, et al. Spatial as deep: spatial cnn for traffic scene understanding[J/OL]. [2017-12-17]. |
15 | Philion J. FastDraw: Addressing the long tail of lane detection by adapting a sequential prediction network[C]∥Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11574-11583. |
16 | Khan H U, Ali A R, Hassan A, et al. Lane detection using lane boundary marker network with road geometry constraints[C]∥IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, USA, 2020: 1823-1832. |
17 | Qin Z, Wang H, Li X. Ultra fast structure-aware deep lane detection[J/OL]. [2020-08-05]. |
18 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
19 | Dettmers T, Zettlemoyer L. Sparse networks from scratch: faster training without losing performance[J/OL]. [2019-08-23]. |
20 | Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. [2017-01-30]. |
[1] | Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421. |
[2] | Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295. |
[3] | Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496. |
[4] | Sheng-sheng WANG,Chen-xu LI,Xiang-yu WANG,Zhi-lin YAO,Yi-shen LIU,Jia-qian WU,Qing-ran YANG. Brain tumor image classification based on improved residual capsule network and sparrow search [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2653-2661. |
[5] | Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531. |
[6] | Xue-yun CHEN,Tao XU,Xiao-qiao HUANG. Detection method of medical cell image generation based on conditional generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1414-1419. |
[7] | Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050. |
[8] | Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097. |
[9] | ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[10] | WANG Hong-mei, DANG Yuan-yuan, HU Ming, LIU Da-you. Frequent itemsets mining algorithm based on sort tree [J]. 吉林大学学报(工学版), 2016, 46(4): 1216-1221. |
[11] | QIN Chuan-dong, LIU San-yang. Tumor gene selection based on double regularized support vector machine [J]. 吉林大学学报(工学版), 2013, 43(01): 192-197. |
|