吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 711-717.doi: 10.7964/jdxbgxb201303026

Previous Articles     Next Articles

Rotation-invariant and fast image template matching algorithm

XIE Zhi-jiang1,2, LYU Bo1, LIU Qin1, CHEN Ping1   

  1. 1. State Key Lab of Mechanical Transmissions, Chongqing University, Chongqing 400044, China;
    2. College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2012-03-27 Online:2013-05-01 Published:2013-05-01

Abstract: A rotation-invariant algorithm use for image template matching is proposed. This algorithm utilizes the rotation invariance of the image gradient amplitude, the rotation migration of the image gradient angle, and the distribution symmetry of the autocorrelation coefficient of the image gradient angle. The algorithm is divided into two steps to complete precisely and rapidly statistical and matching calculation based on three types of different characteristics of the images. Simulation results show that the algorithm can precisely locate the template image, which is with arbitrary angle. The algorithm has good real-time matching performance and less time-complexity. Even in the case of nonlinear transformation with image grayscale, image scaling and image occlusion, the template matching operation using this algorithm has strong robustness.

Key words: computer application, template matching, image gradient, rotation-invariant, statistics of image gradient angle, statistics of image gradient amplitude

CLC Number: 

  • TP391.4
[1] Huttenlocher D P, Klanderman G A, Kl G A, et al. Comparing images using the hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.

[2] Huttenlocher D P, Lilien R H, Olson C F. View-based recognition using an eigenspace approximation to the hausdorff measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(9): 951-955.

[3] Wei S D, Lai S H. Fast template matching based on normalized cross correlation with adaptive multilevel winner update[J]. IEEE Transaction on Image Processing, 2008, 17(11):2227-2235.

[4] 沙莎,刘锦峰.基于差分有序数组的图像匹配快速算法[J].微计算机信息,2007,23(8):296-298. Sha Sha, Liu Jin-feng. Fast image matching algorithm based on differential ordinal array[J]. Microcomputer Information, 2007, 23(8):296-298.

[5] Baek G, Kim S. Two step template matching method with correlation coefficient and genetic algorithm//Proceeding ICIC'09 Proceedings of the Intelligent Computing 5th International Conference on Emerging Intelligent Computing Technology and Applications, Berlin, Heidelberg,2009:85-90.

[6] 李强,张钹. 一种基于图像灰度的快速匹配算法[J].软件学报, 2006, 17(2):216-222. Li Qiang,Zhang Bo. A fast matching algorithm based on image gray value[J]. Journal of Software, 2006,17(2):216-222.

[7] Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2):179-187.

[8] Choi M S, Kim W Y. A novel two stage template matching method for rotation and illumination invariance[J]. Pattern Recognition, 2002, 35(1):119-129.

[9] 傅卫平,秦川,刘佳,等. 基于SIFT算法的图像目标匹配与定位[J]. 仪器仪表学报, 2011, 32(1):163-169. Fu Wei-ping, Qin Chuang, Liu Jia, et al. Matching and location of image object based on SIFT algorithm[J]. Chinese Journal of Scientific Instrument, 2011, 32(1):163-169.

[10] 郑永斌,黄新生, 丰松江,等. SIFT和旋转不变LBP 相结合的图像匹配算法[J]. 计算机辅助设计及图形学报, 2010, 22(2):286-291. Zheng Yong-bin, Huang Xin-sheng, Feng Song-jiang,et al. An image matching algorithm based on combination of SIFT and the rotation invariant LBP[J] .Journal of Computer-Aided Design & Computer Graphics, 2010, 22(2):286-291.

[11] Kim H Y. Rotation-discriminating template matching based on Fourier coefficients of radial projections with robustness to scaling and partial occlusion[J]. Pattern Recognition, 2010, 43(3):859-872.

[12] Yang T, Lai S H, Chang L W. Hybrid image matching combining Hausdorff distance with normalized gradient matching[J]. Pattern Recognition, 2007, 40(4):1173-1181.

[13] Satoh S. Simple low-dimensional features approximating NCC-based image matching[J]. Pattern Recognition Letters, 2011, 32(14):1902-1911.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!