Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1851-1858.doi: 10.13229/j.cnki.jdxbgxb20170455
Previous Articles Next Articles
WANG Li-min(),LIU Yang,SUN Ming-hui(),LI Mei-hui
CLC Number:
[1] |
Das M, Ghosh S, Gupta P , et al. Forward: a model for forecasting reservoir water dynamics using spatial Bayesian network (SpaBN)[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(4):842-855.
doi: 10.1109/TKDE.2016.2647240 |
[2] |
Kang Z, Yang J, Zhong R . A Bayesian-network-based classification method integrating airborne LiDAR data with optical images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(4):1651-1661.
doi: 10.1109/JSTARS.2016.2628775 |
[3] |
Fan X B, Li X . Network tomography via sparse Bayesian learning[J]. IEEE Communications Letters, 2017,21(4):781-784.
doi: 10.1109/LCOMM.2017.2649494 |
[4] |
Chen S L, Martinez A M, Webb G I , et al. Sample-based attribute selective AnDE for large data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(1):172-185.
doi: 10.1109/TKDE.2016.2608881 |
[5] |
Domingos P, Pazzani M . On the optimality of the simple bayesian classifier under zero-one loss[J]. Machine Learning, 1997,29(2):103-130.
doi: 10.1023/A:1007413511361 |
[6] | Hand D J, Yu K . Idiot's Bayes—not so stupid after all?[J]. International Statistical Review, 2001,69(3):385-398. |
[7] |
Friedman N, Dan G, Goldszmidt M . Bayesian network classifiers[J]. Machine Learning, 1997,29(2):131-163.
doi: 10.1023/A:1007465528199 |
[8] |
Jiang L X, Cai Z H, Wang D H , et al. Improving tree augmented naive Bayes for class probability estimation[J]. Knowledge-Based Systems, 2012,26:239-245.
doi: 10.1016/j.knosys.2011.08.010 |
[9] | Sahami M . Learning limited dependence Bayesian classifiers[EB/OL].[2017-04-25].. |
[10] |
Wang L, Zhao H, Sun M , et al. General and local: averaged k-dependence bayesian classifiers[J]. Entropy, 2015,17(6):4134-4154.
doi: 10.3390/e17064134 |
[11] |
Jiang Liang-xiao, Li Chao-qun, Wang Sha-sha , et al. Deep feature weighting for naive Bayes and its application to text classification[J]. Engineering Applications of Artificial Intelligence, 2016,52:26-39.
doi: 10.1016/j.engappai.2016.02.002 |
[12] |
Meehan A, de Campos C P . Averaged extended tree augmented naive classifier[J]. Entropy, 2015,17(7):5085-5100.
doi: 10.3390/e17075085 |
[13] | Martinez A M, Webb G I, Chen S , et al. Scalable learning of Bayesian network classifiers[J]. Journal of Machine Learning Research, 2016,17:1-35. |
[14] | Wang S C, Xu G L, Du R J . Restricted Bayesian classification networks[J]. Science China Information Sciences, 2013,56(7):1-15. |
[15] |
Vergara J R, Estévez P A . A review of feature selection methods based on mutual information[J]. Neural Computing and Applications, 2014,24(1):175-186.
doi: 10.1007/s00521-013-1368-0 |
[16] | Koller D, Sahami M. Toward optimal attribute selection [C]//In Proceedings of the 13th International Conference on Machine Learning,Bari, Italy, 1996: 284-292. |
[17] |
Aliferis C F, Statnikov A, Tsamardinos I , et al. Local causal and markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation[J]. Journal of Machine Learning Research, 2010,11:171-234.
doi: 10.1007/s11430-007-0106-9 |
[18] | Sechidis K, Brown G . Markov blanket discovery in positive-unlabelled and semi-supervised data[DB/OL].[2017-04-26].. |
[19] |
Wang L M, Yuan S M . Induction of hybrid decision tree based on post-discretization strategy[J]. Progress in Natural Science, 2004,14(6):541-545.
doi: 10.1080/10020070412331343911 |
[20] | MacKay D J . Information Theory, Inference, and Learning Algorithms[M]. Cambridge: Cambridge University Press, 2003. |
[21] | Breiman L . Bagging predictors[J]. Machine Learning, 1996,24(2):123-140. |
[22] | Friedman J, Hastie T, Tibshirani R . The Elements of Statistical Learning[M]. Berlin: Springer, 2009. |
[23] | Fayyad U M, Irani K B . Multi-interval discretization of continuous-valued attributes for classification learning[DB/OL].[2017-04-28].. |
[24] | Hu B, Rakthanmanon T, Hao Y , et al. Towards Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL[M]. Berlin: Springer Berlin Heidelberg, 2013. |
[25] |
Demsar J . Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006,7(1):1-30.
doi: 10.1007/s10846-005-9016-2 |
[26] | Ishitaki T, Oda T, Barolli L. A neural network based user identification for tor networks: data analysis using friedman test [C]//30th International Conference on Advanced Information Networking and Applications Workshops,Crans-Montana, Switzerland, 2016: 16022267. |
[1] | Nan WANG,Jin⁃bao LI,Yong LIU,Yu⁃jie ZHANG,Ying⁃li ZHONG. TPR⁃TF: time⁃aware point of interest recommendation model based on tensor factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 920-933. |
[2] | LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850. |
[3] | JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866. |
[4] | ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872. |
[5] | LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878. |
[6] | OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570. |
[7] | LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599. |
[8] | CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628. |
[9] | GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605. |
[10] | LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613. |
[11] | SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264. |
[12] | CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
[13] | ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[14] | HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[15] | FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
|