吉林大学学报(工学版) ›› 2001, Vol. ›› Issue (2): 28-34.

Previous Articles     Next Articles

A Self-adaptive Method of Bone Remodeling Simulating Mecha-sensory Transduction Mechanism at the Cellular Level

ZHANG Chun-qiu, ZHU Xing-hua   

  1. College of Sciences, Jilin University, Nanling Campus, Changchun 130025, China
  • Received:2000-10-09 Online:2001-04-25

Abstract: In the paper,the authors try to develop a self adaptive control model method according to physiological characteristics of bone.The method based on the present mecha sensory transduction mechanism at the cellular level,embodies the processes of cells in bone directly and indirectly accepting mechanical stimulation of bone remodeling and the physiological hypothesis of the function of cellular network.The method also develops the physiological processes of bone remodeling of local adaptation under global regulation,and makes bone structural strain to be controlled not to surpass the physiologically limiting strain.The self adaptive equation of bone remodeling connects the quantified change of macrostructure with mecha sensory transduction mechanism at the cellular level.The self adaptive physiological control model of bone remodeling with physiologically limiting strain is consistent with the physiological processes of bone remodeling,and is tested by calculated example.

Key words: physiologically limiting strain, self adaptation, mecha sensory transduction mechanism, bone structure

CLC Number: 

  • Q66
[1] Wolff J. Das Geset:der transformation der the law of bone remodeling[M]. Berlin:Springer, Berlin, 1982.
[2] Cowin S C, Hegedus D H. Bone Remodeling I:a theory of adaptive elasticity[J]. J. Elasticity, 1976(6):313~326.
[3] Hart R T, Davy D T, Heiple K G. Mathematical modeling and numerical solutions for functionally dependent bone remod eling[J] Calcif. Tissue Int., 1984, 36:S104~109.
[4] Huiskes R, Weinans H, Summer D R, et al. Stress-shielding, stress-bypassing and bone resorption around press-fit and bone ingrowth THA. Trans 35th orthop[J]. Res. Soc., 1989a, 14:529~532.
[5] Huiskes R, Weinans H, Dalstra M. A adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty[J]. Orthopedis, 1989b, 12:1255~1267.
[6] Carter D R, Orr T E, Fyhrie D P. Relationships between loading history and femoral cancellous bone architecture[J]. J.Biomechanics, 1989, 22:231~244.
[7] Beaupre G S, Orr T E, Carter D R. An approach for time-dependent bone modeling and remodeling-application:a prelimi nary remodeling simulation[J]. J. Orthop. Res., 1990b, 8:662~670.
[8] Weinas H, Huiskes R, Grootenboer H J. The behavie of adaptive bone-remodeling simulation models[J]. J. Biomachanics,1992, 25(12):1425~1441.
[9] Cowin S C, Van Bukirk W C. Surface bone remodeling induced by a medullary pin[J]. J. Biomechanics, 1978, 12:269~276.
[10] Huiskes R, Weinans H, Grootenboer H J, et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis[J].J. Biomechanics, 1987(20):1135~1150.
[11] Cowin S C, Moss-salentijn L, Moss M L. Candidates for the mechanosensory system in bone[J].J.Biomech. Engng.,1991, 13:191~~197.
[12] Mullender M G, Huiskes R, Weinans H. A physiological approach to the simulation of bone remodeling as a self-organiza tional control process[J]. J. Boimechanics, 1994, 27(11):1389~1394.
[13] Zhang Dajun, Sheldon Weinbaum, Cowin Stephen C. Electrical signal transmission in a bone cell network:the influence of a discrete gap junction[J]. Annal of Biomedical Engineering, 1998, 26:644~659.
[14] Sheldon Weinbaum. Whitaker distinguished lecture:models to solve mysteries in biomechanies at the cellular level; A new view of giber matrix layers[J]. Annal of Biomedical Engineering 1998, 26:627~643.
[15] Harrigan T P, Hamilton J J. Bone remodeling and structural optimization[J].J. Biomechics, 1994, 27:323~328.
[16] Payten W M, Law M. Generalizatized shape optimization using stress constraints under multiple load cases[J]. Structural Optimization, 1998,15:269~274.
[17] Sachs F. Mechanical transduction in biological system[J]. CRC Critical Reviews in Biomedical Engineering, 1998, 16:141~169.
[1] TIAN Gui-zhong, LIU Zhi-ling, ZHOU Hong-gen, SONG Jiang-chao, ZHU Tao. Quasi-static axial tensile mechanical characteristics of silkworm's anterior silk gland [J]. 吉林大学学报(工学版), 2015, 45(3): 872-877.
[2] . [J]. 吉林大学学报(工学版), 2005, 35(03): 334-338.
[3] ZHU Xing-hua, HOU Ya-jun, SHANG Yu. Investigation on trabecular bone rigidity based on homogenization theory [J]. 吉林大学学报(工学版), 2004, (2): 169-173.
[4] LI Hong, WANG Yu-chen, MA Hong-shun . Experiment Study on the Viscoelasticity of Aorta Abdomen [J]. 吉林大学学报(工学版), 2001, (4): 38-41.
[5] ZHU Dong, GONG He, DONG Yu-shuang . Effects of Changes of Reference Value on Self-optimizing Outcomes in Bone Remodeling Equation [J]. 吉林大学学报(工学版), 2001, (3): 41-44.
[6] DONG Xin, HE Jia-ning, LUO Min, MA Hong-sun. C3-C7 Experiment Research on Neck-vertebra Viscidity & Elasticity [J]. 吉林大学学报(工学版), 2001, (2): 35-39.
[7] DONG Xin, HE Jia-ning, Ma, Hong-sun, LUO Min. The Normalization Creep Functions of C5-6、T6-7、L4-5 Interverbrals of Human Vertebral Column [J]. 吉林大学学报(工学版), 2001, (1): 35-38.
[8] BAI Xue-fei, ZHU Dong, ZHANG Chun-qiu . Structural Simulation of Proximal Femur [J]. 吉林大学学报(工学版), 2000, (4): 56-61.
[9] WANG Yu-chen, ZHOU Zheng-ping, SU Ji-jun. Experimental Study of Femoral Stress in Front and Rear Bone Replacement to Artificial Femoral Head [J]. 吉林大学学报(工学版), 2000, (3): 61-64.
[10] GONG He, ZHU Xing-hua, ZHU Dong. Application of Topology Optimization in the Simulation of Bone's Structure [J]. 吉林大学学报(工学版), 2000, (2): 47-51.
[11] ZHOU Zhen-ping, XU Pei-juan, ZHOU Yan-min. Construction of Computer Graphics and FEM Analysis of Prostheses Tiedly Supported by Natural Tooth and Implant [J]. 吉林大学学报(工学版), 2000, (2): 52-55.
[12] ZHAO Chang-fu, GAO Zhong-li, MA Zhong-sheng, MA Hong-shun. Experimental Study on Compressing Viscoelasticity of Cancellous Femur Upper Part [J]. 吉林大学学报(工学版), 2002, (2): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!