吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 211-218.doi: 10.13229/j.cnki.jdxbgxb201401035

• paper • Previous Articles     Next Articles

Parameterization method for multi-scale regular grid model repairing cracks

GUO Dong-liang1,2, NIE Jun-lan1,2, WANG Yan-fen1, KONG Ling-fu1,2   

  1. 1. College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
    2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao 066004, China
  • Received:2012-07-04 Online:2014-01-01 Published:2014-01-01

Abstract:

When using level-of-detail (LOD) technology, multi-scale regular grid visualization always introduces discontinuous mesh on the boundary with different resolutions. The GPU-based LOD framework for cracks repairing is investigated, and a parameterization method to avoid cracks is proposed. The function curve fitting is employed to change the mesh layout and eliminate T-junctions caused by various LODs transiting. Moreover, the parameterization cracks-repairing method supports multi-span LOD using curve function family excellently. Function curve fitting method is utilized to existing regular-grid-based LOD model. The experiments show that the proposed method can improve the cracks-repairing performance meanwhile guarantee the mesh continuity.

Key words: computer application, cracks repairing, function curve, level of detail, regular grid

CLC Number: 

  • TP391

[1] Ulrich T. Rendering massive terrains using chunked level of detail control[C]//Course Notes of Computer Graphics Annual Conference Series, San Antonio, ACM, 2002.

[2] 李胜, 冀俊峰, 刘学慧, 等. 超大规模地形场景的高性能漫游[J].软件学报, 2006, 17(3): 535-545. Li Sheng, Ji Jun-feng, Liu Xue-hui, et al. High performance navigation of very large-scale terrain environment[J]. Journal of Software, 2006, 17(3):535-545.

[3] Asirvatham A, Hoppe H. GPUGems2-terrain Rendering Using GPU-based Geometry Clipmaps[M].Boston: Addison-Wesley, 2005:27-45.

[4] Willem H, Boer D. Fast terrain rendering using geometrical Mipmapping[C/OL].[2000-06-15]. http://www.connectii.net/emersion.

[5] Yao Chih-yuan, Lee Tong-yee. Adaptive geometry image[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4):948-960.

[6] Duchaineau M, Wolinsky M, Sigeti D E, et al. ROAMing terrain: real-time optimally adapting meshes[C]//Proceeding of the IEEE Visualization, Los Alamitos: IEEE Computer Society Press, 1997:81-88.

[7] Pajarala R. Large scale terrain using the restricted quadtree triangulation[C]//Proceeding of IEEE Visualization, North Carolina: IEEE Computer Society Press, 1998:19-26, 515.

[8] Gobbetti E, Marton F, Cignoni P, et al. C-BDAM-compressed batched dynamic adaptive meshes for terrain rendering[J]. Computer Graphics Forum, 2006, 25(3):333-342.

[9] Lindstrom Peter, Cohen Jonathan D. On-the-fly decompression and rendering of multiresolution terrain[C]//Proceeding of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, Washington D C, ACM, 2010:65-73.

[10] Bosch J, Goswami P, Pajarola R. Raster: simple and efficient terrain rendering on the GPU[C]// Proceeding of Eurographics 2009, Munich: Eurographics Association, 2010: 35-42.

[11] Wagner D. ShaderX2[M]. Texas: Wordware, 2003: 19-32.

[12] Koomia R, Leigh J, Johnson A, et al. Planetary-scale terrain composition[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(5):719-733.

[13] Livny Y, Kogan Z, El-sana J. Seamless patches for gpu-based terrain rendering[J]. Visual Computer, 2009, 25(3):197-208.

[14] Roberts D A K M, Hardy A. Level of detail for terrain geometry images[C]//Proceedings of the 5th International Conference on Computer Graphics, Virtual Reality, Visualization And Interaction in Africa, Grahamstown: ACM, 2007:25-30.

[15] Wahl R, Massing M, Degener P, et al. Scalable compression and rendering of textured terrain data[J]. Journal of WSCG, 2004, 12(3): 521-528.

[16] Schneider J, Westermann R. GPU-friendly high-quality terrain rendering[J]. Journal of WSCG, 2006, 14(1-3): 49-56.

[17] Dick C, Schneider J, Westermann R. Efficient geometry compression for GPU-based decoding in realtime terrain rendering[J]. Computer Graphics Forum, 2009, 28(1): 67-83.

[18] Strugara F. Continuous distance-dependent level of detail for rendering heightmaps[J]. Journal of Graphics, GPU, and Game Tools, 2009, 14(4):57-74.

[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!