吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1010-1015.doi: 10.13229/j.cnki.jdxbgxb201404017

Previous Articles     Next Articles

Reliability modeling of finite Weibull distribution based

on improved EM algorithm   

  1. WANG Ji-li, YANG Zhao-jun, LI Guo-fa, ZHU Xiao-cui
  • Received:2013-02-28 Online:2014-07-01 Published:2014-07-01

Abstract: Taking two-parameter Weibull distribution as the basis function, an optimization model is established based on the maximum likelihood method for parameter estimation, and the model is solved by improved Expectation-Maximization (EM) algorithm. Bayesian random classification algorithm, which is used for parameter initialization, is proposed in the improved EM algorithm. Radial basis function interpolation is used to solve the transcendental equation in the maximization step of the EM algorithm. The performance of the improved EM algorithm is compared with traditional algorithms by case study. Approximation performance of finite Weibull mixture distributions is analyzed with specific cases. The distribution law of the reliability data of ten punching machine tools, which come from testing field, is investigated by Weibull mixture distributions. The relationship between KS test statistic and the number of Weibull distributions is analyzed. The case study suggests that the fourfold Weibull mixture distributions could be better reflect the real law of the punching machine tools in early stage.

Key words: machinery manufacturing automation, reliability of machine tools, finite Weibull mixture distributions, maximum likelihood method, EM algorithm, Bayesian random classification, radial basis function interpolation, KS test

CLC Number: 

  • TG659
[1] Ginebra Josep, Sen Ananda. Minimax approach to accelerated life tests[J]. IEEE Transactions on Reliability, 1999, 47(3):30-37.
[2] 张英芝, 申桂香, 吴甦, 等. 随机截尾数控机床三参数威布尔分布模型[J].吉林大学学报:工学版, 2009, 39(2):378-381.[2] Zhang Ying-zhi, Shen Gui-xiang, Wu Su, et al. 3-parameter Weibull distribution for random truncated NC machine tool fault data[J]. Journal of Jilin University(Engineering and Technology), 2009, 39(2):378-381.
[3] 高顺川, 冯静, 孙权, 等. 基于威布尔分布的动态故障树定量分析方法[J].质量与可靠性, 2005, 119:28-31.
[4] Keller A Z, Kamath A R R. Reliability analysis of CNC machine tools[J].Reliab Eng, 1982, 3(6):449-473.
[5] 郑玉华, 王义强, 赵淑杰.CNC车床故障模式及其原因分析[J].系统工程理论与实践, 1997, 7:139-142.[5] Zheng Yu-hua, Wang Yi-qiang, Zhao Shu-jie.Failure mode and cause analysis of CNC lathe[J].Systems Engineering-Theory & Practice, 1997, 7:139-142.
[6] 姜华, 余群, 曹正清, 等. 基于随机过程理论的复杂可修系统可靠性规律研究[J].质量可靠性技术, 2000, 16(9):30-34.[6] Jiang Hua, Yu Qun, Cao Zheng-qing, et al. Studying reliability laws of complex maintainable system based on the stochastic processes[J]. Technology Supervision in Petroleum Industry, 2000, 16(9):30-34.
[7] Tan Fu-rong, Jiang Zhi-bin, Bai Tong-shuo.Reliability analysis of repairable systems using stochastic point processes[J].Journal of Shanghai Jiaotong University (Science), 2008, 13:366-369.
[8] Wang L Y, Cui L R, Yu M L. Markov repairable systems with stochastic regimes switching[J]. Journal of Systems Engineering and Electronics, 2011, 22:773-779.
[9] Jiang R, Murthy D N P. Reliability modeling involving two Weibull distributions[J]. Reliability Engineering and System Safety, 1995, 47:187-198.
[10] 凌丹, 黄洪钟, 张小玲.混合威布尔分布参数估计的L-M算法[J].电子科技大学学报, 2008, 37(4):634-640.[10] Ling Dan, Huang Hong-zhong, Zhang Xiao-ling.Parameters estimation for mixed Weibull distribution using L-M algorithm[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(4):634-640.
[11] 高翔, 王若平, 夏长高, 等.随机变量多重Weibull统计模型及参数最优估计[J].农业机械学报, 2006, 37(11):41-44.[11] Gao Xiang, Wang Ruo-ping, Xia Chang-gao, et al. Multi-Weibull statistical model of random variables and optimal estimation of its parameters[J].Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(11):41-44.
[12] Bucar T, Nagode M, Fajdiga M. Reliability approximation using finite Weibull mixture distributions[J]. Reliability Engineering and System Safety, 2004, 84(4):241-251.
[13] 穆雪峰, 姚卫星, 余雄庆, 等.多学科设计优化中常用代理模型的研究[J].计算力学学报, 2005, 22(5):608-612.[13] Mu Xue-feng, Yao Wei-xing, Yu Xiong-qing, et al. A survey of surrogate models used in MDO[J].Chinese Journal of Computational Mechanics, 2005, 22(5):608-612.
[1] WANG Yan-zhong, HOU Liang-wei, LYU Qing-jun, ZHAO Xing-fu, WU Can-hui. Processing technology of face gear complex surface based on bus control [J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[2] KUANG Zhe-jun,SHI Wei-jia,HU Liang. Residual energy algorithm of role-relationship and member-relationship based on wireless sensor network [J]. 吉林大学学报(工学版), 2015, 45(2): 600-605.
[3] ZHOU Xiang-chao,XUE Rui,ZHAO Dan-feng,FU Fang. Soft carrier phase synchronization algorithm for continuous phase modulations signals [J]. 吉林大学学报(工学版), 2015, 45(1): 291-296.
[4] YANG Zhao-jun,WANG Ji-li,LI Guo-fa,ZHANG Xin-ge. Reliability growth prediction based on fuzzy analytical hierarchy process for punching machines [J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[5] ZHANG Zhi-cheng, LIN Jun, SHI Yao-wu, SUN Xiao-dong. Joint direction-of-arrival and Doppler frequency estimation based on artificial bee colony algorithm [J]. 吉林大学学报(工学版), 2013, 43(04): 1104-1109.
[6] ZHAN Yu-bin,YIN Jian-ping,LI Kuan. Learning manifold from incomplete image set [J]. 吉林大学学报(工学版), 2011, 41(03): 728-733.
[7] LI Yan-Wen, MA Zhi-Qiang, LIU Gui-Xia, ZHOU Chun-Guang. null [J]. 吉林大学学报(工学版), 2010, 40(05): 1303-1307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!