吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1155-1161.doi: 10.13229/j.cnki.jdxbgxb201504019

Previous Articles     Next Articles

Optimization of structure, working parameters of Y type micro-mixer in two-phase pulsating mixing

  

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2014-03-05 Online:2015-07-01 Published:2015-07-01

Abstract: In order to improve the mixing efficiency of different reactants in microscale, a study on optimization of the structure and working parameters of the Y type pulsing micro mixer is conducted, in which the effects of the structure and parameters on mixing performance are taken into consideration. By simulation analysis, the channel section size, entrance angle, entrance flow rate and pulsation frequency are optimized. Based on the optimized structure and working parameters, a test prototype was made in lab. Using chemical reaction probe method, the prototype is tested. After detecting the size and distribution of gold nanoparticles by controllable synthesis, the mixing performance is evaluated synthetically. The test results indicate that when the entrance flow rate and working frequency are ascertained, there exist corresponding optimum values of the section size and flow rate of the Y type pulsing micro mixer. The entrance flow rate and working frequency are important parameters which influence each other. A certain flow rate corresponds to an optimum mixing frequency.

CLC Number: 

  • TN384
[1] Jeong Gi Seok, Chung Seok, Kim Chang Beom, et al. Applications of micromixing technology[J]. Analyst, 2010, 135(3): 460-473.
[2] Hessel Volker, Löwe Holger, Schönfeld Friedhelm. Micromixers-a review on passive and active mixing principles[J].Chemical Engineering Science, 2005, 60(8-9): 2479-2501.
[3] Suh Yong Kweon, Kang Sangmo. A review on mixing in microfluidics[J]. Micromachines, 2010,1(3): 82-111.
[4] Li Jia-xing, Zhang Meng-ying, Wang Li-mu, et al. Design and fabrication of microfluidic mixer from carbonyl iron-PDMS composite membrane[J]. Microfluid Nanofluid, 2011,10(4): 919-925.
[5] Lee Chia Yen, Chang Chin Lung, Wang Yao nan, et al. Microfluidic mixing: a review[J]. International Journal of Molecular Sciences, 2011,12(5): 3263-3287.
[6] 王灵秀, 张仁元, 陈观生, 等. T型微混合器混合特性的浓度分布评价法[J]. 分析化学研究简报, 2008,8(9): 1241-1244. Wang Ling-xiu, Zhang Ren-yuan, Chen Guan-sheng, et al. Concentration distribution evaluation technique for T-shaped micromixer[J]. Chinese Joumal of Analytical Chemistry, 2008,8(9): 1241-1244.
[7] 夏国栋, 李建, 周明正, 等. Tesla 微混合器结构参数对混合强度的影响[J]. 工程热物理学报, 2011, 32(3):433-436. Xia Guo-dong, Li Jian, Zhou Ming-zheng, et al. The effect of structural parameters on mixing index in tesla-type micromixer[J]. Journal of Engineering Thermophysics, 2011, 32(3):433-436.
[8] 毛文彬,徐进良. 脉动流动强化微混合的研究[J]. 高校化学工程学报, 2009,23(3): 397-403. Mao Wen-bin, Xu Jin-liang. Enhancing the micron scale mixing in a micromixer by pulsating flow[J]. Journal of Chemical Engineering of Chinese Universities, 2009,23(3): 397-403.
[9] Mao W B, Xu J L. Micromixing enhanced by pulsating flows[J]. International Journal of Heat and Mass Transfer, 2009,52(21-22): 5258-5261.
[10] Sugano K, Uchida Y, Ichihashi O, et al. Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfludic system[J]. Microfluid Nanofluid, 2010, 9(6): 1165-1174.
[11] Shi Xin, Xiang Yang, Wen Li-xiong, et al. CFD analysis of flow patterns and micromixing efficiency in a Y-Type microchannel reactor[J]. Industrial and Engineering Chemistry Research, 2012,51(43): 13944-13952.
[12] Ma Yan-bao, Sun Chien Pin, Fields Michael, et al. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure[J]. Journal of Micromech Microeng, 2008,18(4):1-14.
[13] Hsieh Shou Shing, Lin Jyun Wei, Chen Jyun Hong. Mixing efficiency of Y-type micromixers with different angles[J]. International Journal of Heat and Fluid Flow, 2013,44:130-139.
[14] Barath Palanisamy, Brian Paul. Continuous flow synthesis of ceria nanoparticles using static T-mixers[J]. Chemical Engineering Science, 2012, 78: 46-52.
[15] 郭春海, 谭俊杰. 一种新型主动微混合器及其流场的数值研究[J]. 计算力学学报, 2012, 29(5): 800-805. Guo Chun-hai,Tan Jun-jie. A new active micro-mixer and research on its numerical flow field[J]. Chinese Journal of computational Mechanics, 2012, 29(5): 800-805.
[16] 张平, 胡亮红, 刘永顺. 主辅通道型微混合器的设计与制作[J]. 光学精密工程, 2010,18(4): 872-879. Zhang Ping, Hu Liang-hong, Liu Yong-shun. Design and fabrication of micromixer with main-assist channels[J]. Optics and Precision Engineering, 2010,18(4): 872-879.
[17] 彭菊村, 卢强华, 吴波英. 金纳米颗粒水相合成工艺研究[J]. 稀有金属材料与工程, 2006, 35(6): 954-958. Peng Ju-cun, Lu Qiang-hua, Wu Bo-ying. Study on stirring time and in aqueous synthesis for au nanoparticles[J]. Rare Metal Materials and Engineering, 2006, 35(6): 954-958.
[18] Weng Chen Hsun, Huang Chih Chia, Yeh Chen Sheng. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system[J]. Journal of Micromech Microeng, 2008,18(3):1-8.
[1] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[2] LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei. Integrated pulsation micro mixing chip for three-phase flow [J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[3] LIU Guo-jun, ZHANG Yan-yan, YANG Xu-hao, LI Xin-bo, LIU Jian-fang, YANG Zhi-gang. Application of surface acoustic wave in controlled synthesis of gold nanoparticles [J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[4] WANG Hai, YAO Gang, QIU Wan-qun, YANG Chun-lai, FU Bang-chen. Performance-enhanced two-degree-of-freedom energy harvester for low frequency vibration utilizing corrugated cantilever beam [J]. 吉林大学学报(工学版), 2017, 47(4): 1144-1148.
[5] QU Jian-jun, GUO Wen-feng, LI Jiang, LIU Chang. Design of an inverse clamping piezoelectric inchworm motor with linear long distance [J]. 吉林大学学报(工学版), 2015, 45(4): 1168-1174.
[6] Yan Shi-wei,Yang Zhi-gang,Kan Jun-wu,Cheng Guang-ming,Zeng Ping . Energy conversion system with piezoelectric ceramic [J]. 吉林大学学报(工学版), 2008, 38(02): 344-0348.
[7] Wen Jian-ming, Cheng Guang-ming, Zeng Ping, Yang Zhi-gang . Novel inertial piezoelectric rotary actuator [J]. 吉林大学学报(工学版), 2007, 37(05): 1112-1115.
[8] Cheng Guang-ming,Pang Jian-zhi,Tang Ke-hong,Yang Zhi-gang,Zeng Ping,Kan Jun-wu . Development of measuring system for electricity generating
capacity of piezoelectric ceramics
[J]. 吉林大学学报(工学版), 2007, 37(02): 367-0371.
[9] Zeng Ping, Wu Bo-da, Wang Tao, Cheng Guang-ming, Zhang Hong-zhuang .

Inertial linear actuator driven by piezoelectric
bimorph with changeable pressure

[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 83-87.
[10] Liu Jian-fang, Yang Zhi-gang, Zhao Hong-wei, Cheng Guang-ming . Novel piezoelectric precision step rotary actuator
[J]. 吉林大学学报(工学版), 2006, 36(05): 673-0677.
[11] Zhao Hong-wei, Wu Bo-da, Cheng Guang-ming, Liu Guo-song, Liu Jian-fang, Yang Zhi-gang. Ultraprecision piezoelectric stepping linear actuator [J]. 吉林大学学报(工学版), 2006, 36(03): 350-0354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!